Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите наименьшее значение функции $y = 2x^3 + 9x^2 - 60x + 5$ на отрезке $[-1.5; 11]$.…

Сложность:
Среднее время решения: 4 мин. 1 сек.

Найдите наименьшее значение функции $y = 2x^3 + 9x^2 - 60x + 5$ на отрезке $[-1.5; 11]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = (4x - 5) cos x - 4 sin x + 12$, принадлежащую промежутку $(0;{π}/{2})$.

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точку максимума функции $y=(5x^2-3x-3)e^{x+5}$.