Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите наименьшее значение функции $y=\log_{4}{3} / {x^2+4x+12}$ на отрезке $[-6;0]$.…

Сложность:
Среднее время решения: 4 мин. 31 сек.

Найдите наименьшее значение функции $y=\log_{4}{3} / {x^2+4x+12}$ на отрезке $[-6;0]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точку минимума функции $y=(12-5x)\sin x-5\cos x-10$, принадлежащую интервалу $({π} / {2};π)$.

Найдите наибольшее значение функции $y = x + {36}/{x}+ 10$ на отрезке $[-10; -1]$.