Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения и даю свое согласие на обработку персональных данных в соответствии с положением об обработке персональных данных

Найдите точку максимума функции $y=\log_9(16+4x-x^2)+8.$

Сложность:
Среднее время решения: 2 мин. 35 сек.

Найдите точку максимума функции $y=\log_9(16+4x-x^2)+8.$

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Рассмотрите функцию $y = √{x^{2} + 40x + 625}$ и найдите её наименьшее значение.

Найдите наибольшее значение функции $y = (7x^2 - 56x + 56)e^x$ на отрезке $[-3; 2]$.

Рассмотрите функцию $y = √{-500- 60x - x^{2}}$ и найдите её наибольшее значение.

Найдите точку минимума функции $y={x-8} / {x^2+225}$.