Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Найдите наименьшее значение функции $y=3+24x-2x^2-20\ln x$ на отрезке $[{1} / {7};{13} / {7}]$.…

Сложность:
Среднее время решения: 4 мин. 11 сек.

Найдите наименьшее значение функции $y=3+24x-2x^2-20\ln x$ на отрезке $[{1} / {7};{13} / {7}]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Рассмотрите функцию $y = 5^{x^{2}-8x+19}$ и найдите её наименьшее значение.

Найдите точку максимума функции $y={x-5} / {x^2+144}$.

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.