Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения

Найдите наименьшее значение функции: $y={x^{5}} / {15}-x^{3}$ на отрезке $[0;4]$.

Сложность:
Среднее время решения: 3 мин. 23 сек.

Найдите наименьшее значение функции: $y={x^{5}} / {15}-x^{3}$ на отрезке $[0;4]$.

Объект авторского права ООО «Легион»

Посмотреть решение

Вместе с этой задачей также решают:

Найдите точку минимума функции $y = -{x^2 + 10 000}/{x}$.

Найдите точку максимума функции $y=(5x-14)\sin x+5\cos x-4$, принадлежащую интервалу $({π} / {2};π)$.

Найдите точку максимума функции $y = √{102 + 16x - x^2}$.

Найдите точку минимума функции $y = (x - 9)e^{2x+5}$.