Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ

Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды

или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Информатика
География
ОГЭ

Задания ЕГЭ по теме «Четырехугольники»

Задача 1

Найдите площадь трапеции, вершины которой имеют координаты $(1{;}2)$, $(1{;}6)$, $(6{;}12)$, $(6{;}6)$ (см. рис.).

Задача 2

Основания равнобедренной трапеции равны $11$ и $27$. Боковые стороны равны $17$. Найдите тангенс острого угла трапеции.

Задача 3

В параллелограмме $ABCD$ биссектриса угла $B$ пересекает сторону $CD$ в точке $M$ и прямую $AD$ в точке $N$. Найдите периметр треугольника $ABN$, если $MD=5$, $MN=4$, $BM=6$.

Задача 4

В параллелограмме $ABCD$ $AB=20$, $\sin C={3} / {5}$. Высота, опущенная из вершины $B$, пересекает сторону $AD$ в точке $H$. Найдите площадь треугольника $ABH$.

Задача 5

Найдите площадь ромба, если его высота равна $√ {2}$, а тупой угол $150°$.

Задача 6

Основания равнобедренной трапеции равны $11$ и $91$. Высота трапеции равна $16$. Найдите тангенс острого угла.

Задача 7

В параллелограмме $ABCD$ через точку пересечения диагоналей проведена прямая, которая отсекает на сторонах $BC$ и $AD$ отрезки $BE=1{,}6$ и $AF=6{,}4$. $M$ — точка пересечения прямых $AB$ и $EF$. …

Задача 8

Определите тангенс острого угла параллелограмма, если его высоты равны $3√ {2}$ и $5√ {2}$, а периметр равен $32$.

Задача 9

Меньшее основание равнобедренной трапеции равно $3$, высота трапеции равна $5$. Котангенс острого угла равен $1{,}4$. Найдите большее основание.

Задача 10

В параллелограмме $ABCD$ $\sin C={√ {51}} / {10}$. Найдите $\cos B$ (см. рис. ).

Задача 11

Определите синус острого угла параллелограмма, если его высоты равны $5$ и $7$, а периметр равен $48$.

Задача 12

Основания трапеции равны $10$ и $5$, а диагонали — $9$ и $12$. Найдите площадь трапеции.

Задача 13

Основания равнобедренной трапеции равны $7$ и $17$ соответственно, боковые стороны равны $13$. Найдите тангенс острого угла трапеции.

Задача 14

В ромбе $MPKT$ угол $MTP$ равен $41^{°}$ (см. рис.). Найдите угол $PKT$. Ответ дайте в градусах.

Задача 15

В параллелограмме $ABCD$ $AB=20$, $\cos A={4} / {5}$. Высота, опущенная из вершины $D$, пересекает сторону $BC$ в точке $H$. Найдите площадь треугольника $CDH$.

Задача 16

В равнобедренной трапеции косинус острого угла равен ${1} / {4}$, а основания равны $5$ и $9$. Найдите боковую сторону трапеции.

Задача 17

Средняя линия трапеции равна 10 и делит площадь трапеции в отношении $3:5$. Найдите длину большего основания трапеции.

Задача 18

Диагонали четырёхугольника равны $6$ и $9$ (см. рис.). Найдите периметр четырёхугольника, вершинами которого являются середины сторон данного четырёхугольника.

Задача 19

В трапеции $ABCD$ отношение длин оснований $AD$ и $BC$ равно $2$. Диагонали трапеции пересекаются в точке $O$, площадь треугольника $BOC$ равна $3$. Найдите площадь четырёхугольника $BOCP$, где $P$ …

Задача 20

Диагонали трапеции взаимно перпендикулярны, а длина её средней линии равна $9$. Найдите длину отрезка, соединяющего середины оснований трапеции.

1 2 3

Твой план подготовки к ЕГЭ 2017 почти готов

Построить свой план

всего за 3 минуты

Как подготовиться к ЕГЭ по математике (профильной)?