Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ

Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды

или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Информатика
География
ОГЭ

Задание 14 из ЕГЭ 2017 по математике (профильной)

Задача 41

В правильной четырёхугольной пирамиде $SABCD$ сторона основания $AB = 6$, высота $SO = 4$. На апофеме $ST$ грани $BSC$ отмечена точка $K$ так, что $SK = 2$. Плоскость $γ$ параллельна прямой $BC$ и с…

Задача 42

а) Ребро куба $ABCDA_1B_1C_1D_1$ равно $1$. Докажите, что в треугольнике $AB_1C$ радиус вписанной окружности равен ${√6}/{6}$.

б) Рассмотрим три биссектрисы плоских углов, выходящих из точ…

Задача 43

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $5√3$, а плоский угол при вершине пирамиды равен $60°$.

а) Постройте сечение пирамиды плоск…

Задача 44

Дана правильная четырёхугольная пирамида $KMNPQ$ со стороной основания $MNPQ$, равной $6$, и боковым ребром $3√{26}$.

а) Постройте сечение пирамиды плоскостью, проходящей через прямую $NF$ п…

Задача 45

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 10$ и $BD = 24$.

а) Докажите, что прямые $B_1D_1$ и $AC_1$ перпендикулярны.

б) Найдите расстояние между прямы…

Задача 46

Дана правильная четырёхугольная пирамида SABCD, все рёбра которой равны.

а) Постройте сечение пирамиды плоскостью, проходящей через диагональ BD основания перпендикулярно грани SCD…

Задача 47

В основании пирамиды ABCD лежит правильный треугольник ABC. Все боковые рёбра наклонены к основанию под одним и тем же углом.

а) Докажите, что прямаяAB перпендикулярна плоскости, п…

Задача 48

Дана правильная четырёхугольная пирамида $SMNPQ$ с вершиной в точке $S$, сторона основания равна $7$, а плоский угол при вершине пирамиды равен $90°$.

а) Постройте сечение пирамиды плоскос…

Задача 49

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания равна $8$, боковое ребро равно $6$. Точка $K$ принадлежит ребру $A_1B_1$ и делит его в отношении $5 : 3$, считая от вер…

Задача 50

В правильной четырёхугольной призме $MNPQM_{1}N_{1}P_{1}Q_{1}$ сторона основания равна 11, а боковое ребро равно 15. На рёбрах $M_{1}Q_{1}, M_{1}N_{1}$ и $PQ$ взяты точки $X, Y , Z$, соотв…

Задача 51

Все рёбра правильной треугольной призмы $ABCA_1B_1C_1$ равны $12$. Через середины рёбер $AC$ и $BB_1$ и вершину $A_1$ призмы проведена секущая плоскость.

а) Докажите, что ребро $BC$ делится се…

Задача 52

Основанием прямой призмы $ADCDA_1B_1C_1D_1$ является ромб с острым углом $A$, равным $60°$. Все рёбра этой призмы равны $8$. Точки $P$ и $M$ - середины рёбер $AA_1$ и $A_1D_1$ соответственно.

а) Д…

Задача 53

В основании прямой призмы $ABCDA_1B_1C_1D_1$ лежит ромб $ABCD$ с диагоналями $AC = 16$ и $BD = 12$.

а) Докажите, что прямые $BD_1$ и $AC$ перпендикулярны.

б) Найдите расстояние между прямыми $BD_1$ …

Задача 54

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ сторона основания $AB = 4√2$, боковое ребро $AA_1 = 8$, $M$ середина ребра $A_1B_1$. На ребре $DD_1$ отмечена точка $L$ так, что $DL = 2$. Пл…

Задача 55

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD : AM = BK : KD = 2.

а) Пусть L - точка пересечения прямой KM с плоскостью ABC. Докажите, ч…

Задача 56

В правильной треугольной пирамиде $BMNK$ с основанием $MNK$ сторона основания равна $6$, а высота пирамиды равна $3$. На рёбрах $MN, MK$ и $MB$ соответственно отмечены точки $F, E$ и $P$, такие, ч…

Задача 57

В правильной четырёхугольной призме $ABCDA_{1}B_{1}C_{1}D_1$ сторона основания равна 7, а боковое ребро 12. На рёбрах $A_{1}D_1, C_{1}D_1$ и $CB$ взяты точки $F, K, L$ соответственно так, …

Задача 58

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $CC_1$ взята точка $K$ так, что $CK : KC_1 = 1 : 2$.

а) Постройте сечение призмы плоскостью, проходящей через точки $D$ и $K$ па…

Задача 59

Дана правильная треугольная пирамида SABC.

а) Постройте сечение пирамиды плоскостью, проходящей через точку M ребра SA перпендикулярно высоте CN основания пирамиды.

б) Найдите площ…

Задача 60

В правильной четырёхугольной призме $ABCDA_1B_1C_1D_1$ на ребре $AD$ взята точка $F$ так, что $AF : FD = 1 : 3$.

а) Постройте сечение призмы плоскостью, проходящей через точки $B_1$ и $F$ пара…

1 2 3 4 5

Наибольшее и наименьшее значение функций исследует задание 14 ЕГЭ по математике. Оно может содержать в себе вопросы по шести разным темам школьной программы. Для решения задания понадобится черновик – использование его предусмотрено в правилах проведения этого экзамена. Готовый ответ после записывается в бланке работы.

В теме «Исследование степенных и иррациональных функций» вас попросят найти максимум или минимум функции. При этом вопрос может звучать как «найти наименьшее значение функции» и «найти точку минимума функции» - пусть это не вводит вас в заблуждение, составители тестов имеют в этом случае в виду одно и то же. Иногда в задании уточняется интервал, на котором находится искомая величина: «Найдите наименьшее значение функции на отрезке [−3;4]», иногда интервал значений не указывается.

Темы задания № 14 ЕГЭ по математике «Исследование частных», «Исследование произведений», «Исследование показательных и логарифмических функций», «Исследование тригонометрических функций», «Исследование функций без помощи производной» содержат в себе вопросы такого же типа. Экзаменуемые должны будут найти максимальное значение функции или ее минимум, на заданном интервале значений или «вообще».

Задание № 14 ЕГЭ по математике невозможно решить правильно без предварительного усвоения материала не только по алгебре, но и по математике, преподаваемой в средних классах. Подготовиться к экзамену вам поможет учитель или репетитор, а если вы предпочитаете работать самостоятельно, вам пригодятся учебники математики и алгебры любого автора. Главное условие – эти учебники должны быть рекомендованы к использованию в российских школах Министерством Образования. Именно в такой учебной литературе построение вопросов будет совпадать с тем, что применили составители тестов ЕГЭ по математике при подготовке задания № 14.

Твой план подготовки к ЕГЭ 2017 почти готов

Построить свой план

всего за 3 минуты

Как подготовиться к ЕГЭ по математике (профильной)?