Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ

Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды

или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Информатика
География
ОГЭ

Задание 12 из ЕГЭ 2017 по математике (профильной)

Задача 101

Найдите точку минимума функции $y=(4x-3)\sin x+4\cos x-4$, принадлежащую промежутку $(0;{π} / {2})$.

Задача 102

Рассмотрите функцию $y = 4^{-23-10x-x^2}$ и найдите её наибольшее значение.

Задача 103

Найдите наименьшее значение функции $y=3^{x^2-14x+53}.$

Задача 104

Найдите точку минимума функции $y=-{x^2 +196} / {x}.$

Задача 105

Найдите точку максимума функции $y=12^{1+4x-x^2}.$

Задача 106

Найдите точку минимума функции $y=x√ {x} -12x+27.$

Задача 107

Найдите наибольшее значение функции $y=6\cos(x)+3√ 3x-π√ 3+8$ на отрезке $[0;{π} / {2}]$.

Задача 108

Найдите наименьшее значение функции $y=(x-3)^2(x+1)+2$ на отрезке $[-1;5]$.

Задача 109

Найдите наибольшее значение функции $y=x^3 -6x^2+8 $ на отрезке $ [-2,5;1,5].$

Задача 110

Найдите наибольшее значение функции: $f(x)=x-\log_2x$ на отрезке $[{1} / {2};2]$.

Задача 111

Найдите точку минимума функции $y = (x+5){{e}^{x-3}}.$

Задача 112

Найдите точку минимума функции $y = 4x-\ln (x+1)+108.$

Задача 113

Найдите точку минимума функции $y={2} / {3}x^{{3} / {2}} -8x-206.$

Задача 114

Найдите наименьшее значение функции $y=√ {x^2+22x+122}.$

Задача 115

Найдите наибольшее значение функции $y=-x^3+3x+5$ на отрезке $[-1;2]$.

Задача 116

Найдите точку минимума функции $y=2x^3-150x+11$.

Задача 117

Найдите точку максимума функции $y=x^3 -75x +8.$

Задача 118

Найдите точку максимума функции $y=15x^2-x^3$.

Задача 119

Найдите точку максимума функции $y = \ln (x-8)-5x+14.$

Задача 120

Найдите точку минимума функции $y=(x+4)e^{x-4}$.

1 ... 4 5 6 7 8 ... 10

Задачи по стереометрии рассматриваются в задании 12 ЕГЭ по математике. Условно все варианты экзаменационных билетов поделены на семь категорий – задачи по кубу, призме, цилиндру, параллельному параллелепипеду, пирамиде, конусу и шару.

Задачи о кубе бывают двух типов: в одних нужно найти величину какого-то элемента куба (длину ребра, объем, площадь всей поверхности или одной только грани, диагональ), задачи второго типа могут звучать так: «Ребро куба увеличилось в четыре раза. Во сколько раз увеличилась площадь его поверхности?» (или обратный вариант этой же задачи: «Объем куба увеличился в 125 раз. Во сколько раз увеличилась длина его ребра?»). Похожи и варианты задания № 12 ЕГЭ по математике, касающиеся параллельного параллелепипеда и призмы – вы будете находить их объем, площадь поверхности, размер стороны, периметр одной грани и т.д.

В задачах о конусе добавляются еще два параметра, которые могут быть неизвестными – его образующая и угол наклона образующей к основанию. Так как в основе конуса лежит круг, большинство вычислений будет проходить с использованием константы π. Для простоты ответа большинство вопросов в тестах будет звучать примерно так: «Найдите площадь полной поверхности конуса, поделенную на π» или «Найдите объем конуса, поделенный на π». Такое же построение вопросов и у вариантов задания 12 ЕГЭ по математике о цилиндре.

Определенную сложность у выпускников вызывают варианты экзаменационного билета с вопросом о пирамиде. В задачах нужно будет определять разнообразные параметры этого геометрического тела, при этом пирамиды в задании могут быть трех-, четырех-, шестиугольными, правильными и неправильными. Трудные вопросы встречаются в разделе о шаре: «Радиусы двух шаров равны 6 и 8 метров. Необходимо найти радиус такого шара, чья площадь поверхности равна сумме площадей поверхностей шаров №1 и №2».

Твой план подготовки к ЕГЭ 2017 почти готов

Построить свой план

всего за 3 минуты

Как подготовиться к ЕГЭ по математике (профильной)?