Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Создание и исполнение алгоритма

Теория к заданию 6 из ЕГЭ по информатике

Информация и ее кодирование

Различные подходы к определению понятия «информация». Виды информационных процессов. Информационный аспект в деятельности человека

Информация (лат. informatio — разъяснение, изложение, набор сведений) — базовое понятие в информатике, которому нельзя дать строгого определения, а можно только пояснить:

  • информация — это новые факты, новые знания;
  • информация — это сведения об объектах и явлениях окружающей среды, которые повышают уровень осведомленности человека;
  • информация — это сведения об объектах и явлениях окружающей среды, которые уменьшают степень неопределенности знаний об этих объектах или явлениях при принятии определенных решений.

Понятие «информация» является общенаучным, т. е. используется в различных науках: физике, биологии, кибернетике, информатике и др. При этом в каждой науке данное понятие связано с различными системами понятий. Так, в физике информация рассматривается как антиэнтропия (мера упорядоченности и сложности системы). В биологии понятие «информация» связывается с целесообразным поведением живых организмов, а также с исследованиями механизмов наследственности. В кибернетике понятие «информация» связано с процессами управления в сложных системах.

Основными социально значимыми свойствами информации являются:

  • полезность;
  • доступность (понятность);
  • актуальность;
  • полнота;
  • достоверность;
  • адекватность.

В человеческом обществе непрерывно протекают информационные процессы: люди воспринимают информацию из окружающего мира с помощью органов чувств, осмысливают ее и принимают определенные решения, которые, воплощаясь в реальные действия, воздействуют на окружающий мир.

Информационный процесс — это процесс сбора (приема), передачи (обмена), хранения, обработки (преобразования) информации.

Сбор информации — это процесс поиска и отбора необходимых сообщений из разных источников (работа со специальной литературой, справочниками; проведение экспериментов; наблюдения; опрос, анкетирование; поиск в информационно-справочных сетях и системах и т. д.).

Передача информации — это процесс перемещения сообщений от источника к приемнику по каналу передачи. Информация передается в форме сигналов — звуковых, световых, ультразвуковых, электрических, текстовых, графических и др. Каналами передачи могут быть воздушное пространство, электрические и оптоволоконные кабели, отдельные люди, нервные клетки человека и т. д.

Хранение информации — это процесс фиксирования сообщений на материальном носителе. Сейчас для хранения информации используются бумага, деревянные, тканевые, металлические и другие поверхности, кино- и фотопленки, магнитные ленты, магнитные и лазерные диски, флэш-карты и др.

Обработка информации — это процесс получения новых сообщений из имеющихся. Обработка информации является одним из основных способов увеличения ее количества. В результате обработки из сообщения одного вида можно получить сообщения других видов.

Защита информации — это процесс создания условий, которые не допускают случайной потери, повреждения, изменения информации или несанкционированного доступа к ней. Способами защиты информации являются создание ее резервных копий, хранение в защищенном помещении, предоставление пользователям соответствующих прав доступа к информации, шифрование сообщений и др.

Язык как способ представления и передачи информации

Для того чтобы сохранить информацию и передать ее, с давних времен использовались знаки.

В зависимости от способа восприятия знаки делятся на:

  • зрительные (буквы и цифры, математические знаки, музыкальные ноты, дорожные знаки и др.);
  • слуховые (устная речь, звонки, сирены, гудки и др.);
  • осязательные (азбука Брайля для слепых, жесты-касания и др.);
  • обонятельные;
  • вкусовые.

Для долговременного хранения знаки записывают на носители информации.

Для передачи информации используются знаки в виде сигналов (световые сигналы светофора, звуковой сигнал школьного звонка и т. д.).

По способу связи между формой и значением знаки делятся на:

  • иконические — их форма похожа на отображаемый объект (например, значок папки «Мой компьютер» на «Рабочем столе» компьютера);
  • символы — связь между их формой и значением устанавливается по общепринятому соглашению (например, буквы, математические символы ∫, ≤, ⊆, ∞; символы химических элементов).

Для представления информации используются знаковые системы, которые называются языками. Основу любого языка составляет алфавит — набор символов, из которых формируется сообщение, и набор правил выполнения операций над символами.

Языки делятся на:

  • естественные (разговорные) — русский, английский, немецкий и др.;
  • формальные — встречающиеся в специальных областях человеческой деятельности (например, язык алгебры, языки программирования, электрических схем и др.)

Системы счисления также можно рассматривать как формальные языки. Так, десятичная система счисления — это язык, алфавит которого состоит из десяти цифр 0..9, двоичная система счисления — язык, алфавит которого состоит из двух цифр — 0 и 1.

Методы измерения количества информации: вероятностный и алфавитный

Единицей измерения количества информации является бит. 1 бит — это количество информации, содержащейся в сообщении, которое вдвое уменьшает неопределенность знаний о чем-либо.

Связь между количеством возможных событий N и количеством информации I определяется формулой Хартли:

N = 2I.

Например, пусть шарик находится в одной из четырех коробок. Таким образом, имеется четыре равновероятных события (N = 4). Тогда по формуле Хартли 4 = 2I. Отсюда I = 2. То есть сообщение о том, в какой именно коробке находится шарик, содержит 2 бита информации.

Алфавитный подход

При алфавитном подходе к определению количества информации отвлекаются от содержания (смысла) информации и рассматривают ее как последовательность знаков определенной знаковой системы. Набор символов языка (алфавит) можно рассматривать как различные возможные события. Тогда, если считать, что появление символов в сообщении равновероятно, по формуле Хартли можно рассчитать, какое количество информации несет каждый символ:

I = log2 N.

Например, в русском языке 32 буквы (буква ё обычно не используется), т. е. количество событий будет равно 32. Тогда информационный объем одного символа будет равен:

I = log2 32 = 5 битов.

Если N не является целой степенью 2, то число log2N не является целым числом, и для I надо выполнять округление в большую сторону. При решении задач в таком случае I можно найти как log2N', где N′ — ближайшая к N степень двойки — такая, что N′ > N.

Например, в английском языке 26 букв. Информационный объем одного символа можно найти так:

N = 26; N' = 32; I = log2N' = log2(25) = 5 битов.

Если количество символов алфавита равно N, а количество символов в записи сообщения равно М, то информационный объем данного сообщения вычисляется по формуле:

I = M · log2N.

Примеры решения задач

Пример 1. Световое табло состоит из лампочек, каждая из которых может находиться в одном из двух состояний («включено» или «выключено»). Какое наименьшее количество лампочек должно находиться на табло, чтобы с его помощью можно было передать 50 различных сигналов?

Решение. С помощью n лампочек, каждая из которых может находиться в одном из двух состояний, можно закодировать 2n сигналов. 25 < 50 < 26, поэтому пяти лампочек недостаточно, а шести хватит.

Ответ: 6.

Пример 2. Метеорологическая станция ведет наблюдения за влажностью воздуха. Результатом одного измерения является целое число от 0 до 100, которое записывается при помощи минимально возможного количества битов. Станция сделала 80 измерений. Определите информационный объем результатов наблюдений.

Решение. В данном случае алфавитом является множество целых чисел от 0 до 100. Всего таких значений 101. Поэтому информационный объем результатов одного измерения I = log2101. Это значение не будет целочисленным. Заменим число 101 ближайшей к нему степенью двойки, большей 101. Это число 128 = 27. Принимаем для одного измерения I = log2128 = 7 битов. Для 80 измерений общий информационный объем равен:

80 · 7 = 560 битов = 70 байтов.

Ответ: 70 байтов.

Вероятностный подход

Вероятностный подход к измерению количества информации применяют, когда возможные события имеют различные вероятности реализации. В этом случае количество информации определяют по формуле Шеннона:

$I=-∑↙{i=1}↖{N}p_ilog_2p_i$,

где $I$ — количество информации;

$N$ — количество возможных событий;

$p_i$ — вероятность $i$-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

$p_1={1}/{2}, p_2={1}/{4}, p_3={1}/{8}, p_4={1}/{8}$.

Тогда количество информации, которое будет получено после реализации одного из них, можно вычислить по формуле Шеннона:

$I=-({1}/{2}·log_2{1}/{2}+{1}/{4}·log_2{1}/{4}+{1}/{8}·log_2{1}/{8}+{1}/{8}·log_2{1}/{8})={14}/{8}$ битов $= 1.75 $бита.

Единицы измерения количества информации

Наименьшей единицей информации является бит (англ. binary digit (bit) — двоичная единица информации).

Бит — это количество информации, необходимое для однозначного определения одного из двух равновероятных событий. Например, один бит информации получает человек, когда он узнает, опаздывает с прибытием нужный ему поезд или нет, был ночью мороз или нет, присутствует на лекции студент Иванов или нет и т. д.

В информатике принято рассматривать последовательности длиной 8 битов. Такая последовательность называется байтом.

Производные единицы измерения количества информации:

1 байт = 8 битов

1 килобайт (Кб) = 1024 байта = 210 байтов

1 мегабайт (Мб) = 1024 килобайта = 220 байтов

1 гигабайт (Гб) = 1024 мегабайта = 230 байтов

1 терабайт (Тб) = 1024 гигабайта = 240 байтов

Процесс передачи информации. Виды и свойства источников и приемников информации. Сигнал, кодирование и декодирование, причины искажения информации при передаче

Информация передается в виде сообщений от некоторого источника информации к ее приемнику посредством канала связи между ними.

В качестве источника информации может выступать живое существо или техническое устройство. Источник посылает передаваемое сообщение, которое кодируется в передаваемый сигнал.

Сигнал — это материально-энергетическая форма представления информации. Другими словами, сигнал — это переносчик информации, один или несколько параметров которого, изменяясь, отображают сообщение. Сигналы могут быть аналоговыми (непрерывными) или дискретными (импульсными).

Сигнал посылается по каналу связи. В результате в приемнике появляется принимаемый сигнал, который декодируется и становится принимаемым сообщением.

Передача информации по каналам связи часто сопровождается воздействием помех, вызывающих искажение и потерю информации.

Примеры решения задач

Пример 1. Для кодирования букв А, З, Р, О используются двухразрядные двоичные числа 00, 01, 10, 11 соответственно. Этим способом закодировали слово РОЗА и результат записали шестнадцатеричным кодом. Указать полученное число.

Решение. Запишем последовательность кодов для каждого символа слова РОЗА: 10 11 01 00. Если рассматривать полученную последовательность как двоичное число, то в шестнадцатеричном коде оно будет равно: 1011 01002 = В416.

Ответ: В416.

Скорость передачи информации и пропускная способность канала связи

Прием/передача информации может происходить с разной скоростью. Количество информации, передаваемое за единицу времени, есть скорость передачи информации, или скорость информационного потока.

Скорость выражается в битах в секунду (бит/с) и кратных им Кбит/с и Мбит/с, а также в байтах в секунду (байт/с) и кратных им Кбайт/с и Мбайт/с.

Максимальная скорость передачи информации по каналу связи называется пропускной способностью канала.

Примеры решения задач

Пример 1. Скорость передачи данных через ADSL-соединение равна 256000 бит/с. Передача файла через данное соединение заняла 3 мин. Определите размер файла в килобайтах.

Решение. Размер файла можно вычислить, если умножить скорость передачи информации на время передачи. Выразим время в секундах: 3 мин = 3 ⋅ 60 = 180 с. Выразим скорость в килобайтах в секунду: 256000 бит/с = 256000 : 8 : 1024 Кбайт/с. При вычислении размера файла для упрощения расчетов выделим степени двойки:

Размер файла = (256000 : 8 : 1024) ⋅ (3 ⋅ 60) = (28 ⋅ 103 : 23 : 210) ⋅ (3 ⋅ 15 ⋅ 22) = (28 ⋅ 125 ⋅ 23 : 23 : 210) ⋅ (3 ⋅ 15 ⋅ 22) = 125 ⋅ 45 = 5625 Кбайт.

Ответ: 5625 Кбайт.

Представление числовой информации. Сложение и умножение в разных системах счисления

Представление числовой информации с помощью систем счисления

Для представления информации в компьютере используется двоичный код, алфавит которого состоит из двух цифр — 0 и 1. Каждая цифра машинного двоичного кода несет количество информации, равное одному биту.

Система счисления — это система записи чисел с помощью определенного набора цифр.

Система счисления называется позиционной, если одна и та же цифра имеет различное значение, которое определяется ее местом в числе.

Позиционной является десятичная система счисления. Например, в числе 999 цифра «9» в зависимости от позиции означает 9, 90, 900.

Римская система счисления является непозиционной. Например, значение цифры Х в числе ХХІ остается неизменным при вариации ее положения в числе.

Позиция цифры в числе называется разрядом. Разряд числа возрастает справа налево, от младших разрядов к старшим.

Количество различных цифр, употребляемых в позиционной системе счисления, называется ее основанием.

Развернутая форма числа — это запись, которая представляет собой сумму произведений цифр числа на значение позиций.

Например: 8527 = 8 ⋅ 103 + 5 ⋅ 102 + 2 ⋅ 101 + 7 ⋅ 100.

Развернутая форма записи чисел произвольной системы счисления имеет вид

$∑↙{i=n-1}↖{-m}a_iq^i$,

где $X$ — число;

$a$ — цифры численной записи, соответствующие разрядам;

$i$ — индекс;

$m$ — количество разрядов числа дробной части;

$n$ — количество разрядов числа целой части;

$q$ — основание системы счисления.

Например, запишем развернутую форму десятичного числа $327.46$:

$n=3, m=2, q=10.$

$X=∑↙{i=2}↖{-2}a_iq^i=a_2·10^2+a_1·10^1+a_0·10^0+a_{-1}·10^{-1}+a_{-2}·10^{-2}=3·10^2+2·10^1+7·10^0+4·10^{-1}+6·10^{-2}$

Если основание используемой системы счисления больше десяти, то для цифр вводят условное обозначение со скобкой вверху или буквенное обозначение: В — двоичная система, О — восмеричная, Н — шестнадцатиричная.

Например, если в двенадцатеричной системе счисления 10 = А, а 11 = В, то число 7А,5В12 можно расписать так:

7А,5В12 = В ⋅ 12-2 + 5 ⋅ 2-1 + А ⋅ 120 + 7 ⋅ 121.

В шестнадцатеричной системе счисления 16 цифр, обозначаемых 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, что соответствует следующим числам десятеричной системы счисления: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Примеры чисел: 17D,ECH; F12AH.

Перевод чисел в позиционных системах счисления

Перевод чисел из произвольной системы счисления в десятичную

Для перевода числа из любой позиционной системы счисления в десятичную необходимо использовать развернутую форму числа, заменяя, если это необходимо, буквенные обозначения соответствующими цифрами. Например:

11012 = 1 ⋅ 23 + 1 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 1310;

17D,ECH = 12 ⋅ 16–2 + 14 ⋅ 16–1 + 13 ⋅ 160 + 7 ⋅ 161 + 1 ⋅ 162 = 381,921875.

Перевод чисел из десятичной системы счисления в заданную

Для преобразования целого числа десятичной системы счисления в число любой другой системы счисления последовательно выполняют деление нацело на основание системы счисления, пока не получат нуль. Числа, которые возникают как остаток от деления на основание системы, представляют собой последовательную запись разрядов числа в выбранной системе счисления от младшего разряда к старшему. Поэтому для записи самого числа остатки от деления записывают в обратном порядке.

Например, переведем десятичное число 475 в двоичную систему счисления. Для этого будем последовательно выполнять деление нацело на основание новой системы счисления, т. е. на 2:

Читая остатки от деления снизу вверх, получим 111011011.

Проверка:

1 ⋅ 28 + 1 ⋅ 27 + 1 ⋅ 26 + 0 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 1 + 2 + 8 + 16 + 64 + 128 + 256 = 47510.

Для преобразования десятичных дробей в число любой системы счисления последовательно выполняют умножение на основание системы счисления, пока дробная часть произведения не будет равна нулю. Полученные целые части являются разрядами числа в новой системе, и их необходимо представлять цифрами этой новой системы счисления. Целые части в дальнейшем отбрасываются.

Например, переведем десятичную дробь 0,37510 в двоичную систему счисления:

Полученный результат — 0,0112.

Не каждое число может быть точно выражено в новой системе счисления, поэтому иногда вычисляют только требуемое количество разрядов дробной части.

Перевод чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно

Для записи восьмеричных чисел используются восемь цифр, т. е. в каждом разряде числа возможны 8 вариантов записи. Каждый разряд восьмеричного числа содержит 3 бита информации (8 = 2І; І = 3).

Таким образом, чтобы из восьмеричной системы счисления перевести число в двоичный код, необходимо каждую цифру этого числа представить триадой двоичных символов. Лишние нули в старших разрядах отбрасываются.

Например:

1234,7778 = 001 010 011 100,111 111 1112 = 1 010 011 100,111 111 1112;

12345678 = 001 010 011 100 101 110 1112 = 1 010 011 100 101 110 1112.

При переводе двоичного числа в восьмеричную систему счисления нужно каждую триаду двоичных цифр заменить восьмеричной цифрой. При этом, если необходимо, число выравнивается путем дописывания нулей перед целой частью или после дробной.

Например:

11001112 = 001 100 1112 = 1478;

11,10012 = 011,100 1002 = 3,448;

110,01112 = 110,011 1002 = 6,348.

Для записи шестнадцатеричных чисел используются шестнадцать цифр, т. е. для каждого разряда числа возможны 16 вариантов записи. Каждый разряд шестнадцатеричного числа содержит 4 бита информации (16 = 2І; І = 4).

Таким образом, для перевода двоичного числа в шестнадцатеричное его нужно разбить на группы по четыре цифры и преобразовать каждую группу в шестнадцатеричную цифру.

Например:

11001112 = 0110 01112 = 6716;

11,10012 = 0011,10012 = 3,916;

110,01110012 = 0110,0111 00102 = 65,7216.

Для перевода шестнадцатеричного числа в двоичный код необходимо каждую цифру этого числа представить четверкой двоичных цифр.

Например:

1234,AB7716 = 0001 0010 0011 0100,1010 1011 0111 01112 = 1 0010 0011 0100,1010 1011 0111 01112;

CE456716 = 1100 1110 0100 0101 0110 01112.

При переводе числа из одной произвольной системы счисления в другую нужно выполнить промежуточное преобразование в десятичное число. При переходе из восьмеричного счисления в шестнадцатеричное и обратно используется вспомогательный двоичный код числа.

Например, переведем троичное число 2113 в семеричную систему счисления. Для этого сначала преобразуем число 2113 в десятичное, записав его развернутую форму:

2113 = 2 ⋅ 32 + 1 ⋅ 31 + 1 ⋅ 30 = 18 + 3 + 1 = 2210.

Затем переведем десятичное число 2210 в семеричную систему счисления делением нацело на основание новой системы счисления, т. е. на 7:

Итак, 2113 = 317.

Примеры решения задач

Пример 1. В системе счисления с некоторым основанием число 12 записывается в виде 110. Указать это основание.

Решение. Обозначим искомое основание п. По правилу записи чисел в позиционных системах счисления 1210 = 110n = 0 ·n0 + 1 · n1 + 1 · n2. Составим уравнение: n2 + n = 12 . Найдем натуральный корень уравнения (отрицательный корень не подходит, т. к. основание системы счисления, по определению, натуральное число большее единицы): n = 3 . Проверим полученный ответ: 1103 = 0· 30 + 1 · 31 + 1 · 32 = 0 + 3 + 9 = 12 .

Ответ: 3.

Пример 2. Указать через запятую в порядке возрастания все основания систем счисления, в которых запись числа 22 оканчивается на 4.

Решение. Последняя цифра в записи числа представляет собой остаток от деления числа на основание системы счисления. 22 - 4 = 18. Найдем делители числа 18. Это числа 2, 3, 6, 9, 18. Числа 2 и 3 не подходят, т. к. в системах счисления с основаниями 2 и 3 нет цифры 4. Значит, искомыми основаниями являются числа 6, 9 и 18. Проверим полученный результат, записав число 22 в указанных системах счисления: 2210 = 346 = 249 = 1418.

Ответ: 6, 9, 18.

Пример 3. Указать через запятую в порядке возрастания все числа, не превосходящие 25, запись которых в двоичной системе счисления оканчивается на 101. Ответ записать в десятичной системе счисления.

Решение. Для удобства воспользуемся восьмеричной системой счисления. 1012 = 58. Тогда число х можно представить как x = 5 · 80 + a1 · 81 + a2 · 82 + a3 · 83 + ... , где a1, a2, a3, … — цифры восьмеричной системы. Искомые числа не должны превосходить 25, поэтому разложение нужно ограничить двумя первыми слагаемыми ( 82 > 25), т. е. такие числа должны иметь представление x = 5 + a1 · 8. Поскольку x ≤ 25 , допустимыми значениями a1 будут 0, 1, 2. Подставив эти значения в выражение для х, получим искомые числа:

a= 0; x = 5 + 0 · 8 = 5;.

a1=1; x = 5 + 1 · 8 = 13;.

a= 2; x = 5 + 2 · 8 = 21;.

Выполним проверку:

510 = 1012;

1310 = 11012;

2110 = 101012.

Ответ: 5, 13, 21.

Арифметические операции в позиционных системах счисления

Правила выполнения арифметических действий над двоичными числами задаются таблицами сложения, вычитания и умножения.

Сложение Вычитание Умножение
0 + 0 = 0 0 – 0 = 0 0 ⋅ 0 = 0
0 + 1 = 1 1 – 0 = 1 0 ⋅ 1 = 0
1 + 0 = 1 1 – 1 = 0 1 ⋅ 0 = 0
1 + 1 = 10 10 – 1 = 1 1 ⋅ 1 = 1

Правило выполнения операции сложения одинаково для всех систем счисления: если сумма складываемых цифр больше или равна основанию системы счисления, то единица переносится в следующий слева разряд. При вычитании, если необходимо, делают заем.

Пример выполнения сложения: сложим двоичные числа 111 и 101, 10101 и 1111:

Пример выполнения вычитания: вычтем двоичные числа 10001 – 101 и 11011 – 1101:

Пример выполнения умножения: умножим двоичные числа 110 и 11, 111 и 101:

Аналогично выполняются арифметические действия в восьмеричной, шестнадцатеричной и других системах счисления. При этом необходимо учитывать, что величина переноса в следующий разряд при сложении и заем из старшего разряда при вычитании определяется величиной основания системы счисления.

Например, выполним сложение восьмеричных чисел 368 и 158, а также вычитание шестнадцатеричных чисел 9С16 и 6716:

При выполнении арифметических операций над числами, представленными в разных системах счисления, нужно предварительно перевести их в одну и ту же систему.

Представление чисел в компьютере

Формат с фиксированной запятой

В памяти компьютера целые числа хранятся в формате с фиксированной запятой: каждому разряду ячейки памяти соответствует один и тот же разряд числа, «запятая» находится вне разрядной сетки.

Для хранения целых неотрицательных чисел отводится 8 битов памяти. Минимальное число соответствует восьми нулям, хранящимся в восьми битах ячейки памяти, и равно 0. Максимальное число соответствует восьми единицам и равно

1 ⋅ 27 + 1 ⋅ 26 + 1 ⋅ 25 + 1 ⋅ 24 + 1 ⋅ 23 + 1 ⋅ 22 + 1 ⋅ 21 + 1 ⋅ 20 = 25510.

Таким образом, диапазон изменения целых неотрицательных чисел — от 0 до 255.

Для п-разрядного представления диапазон будет составлять от 0 до 2n – 1.

Для хранения целых чисел со знаком отводится 2 байта памяти (16 битов). Старший разряд отводится под знак числа: если число положительное, то в знаковый разряд записывается 0, если число отрицательное — 1. Такое представление чисел в компьютере называется прямым кодом.

Для представления отрицательных чисел используется дополнительный код. Он позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие. Дополнительный код отрицательного числа А, хранящегося в п ячейках, равен 2n − |А|.

Алгоритм получения дополнительного кода отрицательного числа:

1. Записать прямой код числа в п двоичных разрядах.

2. Получить обратный код числа. (Обратный код образуется из прямого кода заменой нулей единицами, а единиц — нулями, кроме цифр знакового разряда. Для положительных чисел обратный код совпадает с прямым. Используется как промежуточное звено для получения дополнительного кода.)

3. Прибавить единицу к полученному обратному коду.

Например, получим дополнительный код числа –201410 для шестнадцатиразрядного представления:

Прямой код Двоичный код числа 201410 со знаковым разрядом 1000011111011110
Обратный код Инвертирование (исключая знаковый разряд) 1111100000100001
  Прибавление единицы 1111100000100001 + 0000000000000001
Дополнительный код   1111100000100010

При алгебраическом сложении двоичных чисел с использованием дополнительного кода положительные слагаемые представляют в прямом коде, а отрицательные — в дополнительном коде. Затем суммируют эти коды, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают. В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном — если сумма отрицательная.

Например:

1) Найдем разность 1310 – 1210 для восьмибитного представления. Представим заданные числа в двоичной системе счисления:

1310 = 11012 и 1210 = 11002.

Запишем прямой, обратный и дополнительный коды для числа –1210 и прямой код для числа 1310 в восьми битах:

  1310 –1210
Прямой код 00001101 10001100
Обратный код 11110011
Дополнительный код 11110100

Вычитание заменим сложением (для удобства контроля за знаковым разрядом условно отделим его знаком «_»):

Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

2) Найдем разность 810 – 1310 для восьмибитного представления.

Запишем прямой, обратный и дополнительный коды для числа –1310 и прямой код для числа 810 в восьми битах:

  810 –1310
Прямой код 00001000 10001101
Обратный код 11110010
Дополнительный код 11110011

Вычитание заменим сложением:

В знаковом разряде стоит единица, а значит, результат получен в дополнительном коде. Перейдем от дополнительного кода к обратному, вычтя единицу:

11111011 – 00000001 = 11111010.

Перейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: 10000101. Это десятичное число –510.

Так как при п-разрядном представлении отрицательного числа А в дополнительном коде старший разряд выделяется для хранения знака числа, минимальное отрицательное число равно: А = –2n–1, а максимальное: |А| = 2n–1 или А = –2n–1 – 1.

Определим диапазон чисел, которые могут храниться в оперативной памяти в формате длинных целых чисел со знаком (для хранения таких чисел отводится 32 бита памяти). Минимальное отрицательное число равно

А = –231 = –214748364810.

Максимальное положительное число равно

А = 231 – 1 = 214748364710.

Достоинствами формата с фиксированной запятой являются простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций. Недостатком является небольшой диапазон представимых чисел, недостаточный для решения большинства прикладных задач.

Формат с плавающей запятой

Вещественные числа хранятся и обрабатываются в компьютере в формате с плавающей запятой, использующем экспоненциальную форму записи чисел.

Число в экспоненциальном формате представляется в таком виде:

$A=m·q^n$,

где $m$ — мантисса числа (правильная отличная от нуля дробь);

$q$ — основание системы счисления;

$n$ — порядок числа.

Например, десятичное число 2674,381 в экспоненциальной форме запишется так:

2674,381 = 0,2674381 ⋅ 104.

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность) или 8 байтов (двойная точность). При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы. Две последние величины определяют диапазон изменения чисел и их точность.

Определим диапазон (порядок) и точность (мантиссу) для формата чисел обычной точности, т. е. четырехбайтных. Из 32 битов 8 выделяется для хранения порядка и его знака и 24 — для хранения мантиссы и ее знака.

Найдем максимальное значение порядка числа. Из 8 разрядов старший разряд используется для хранения знака порядка, остальные 7 — для записи величины порядка. Значит, максимальное значение равно 11111112 = 12710. Так как числа представляются в двоичной системе счисления, то

$q^n = 2^{127}≈ 1.7 · 10^{38}$.

Аналогично, максимальное значение мантиссы равно

$m = 2^{23} - 1 ≈ 2^{23} = 2^{(10 · 2.3)} ≈ 1000^{2.3} = 10^{(3 · 2.3)} ≈ 10^7$.

Таким образом, диапазон чисел обычной точности составляет $±1.7 · 10^{38}$.

Кодирование текстовой информации. Кодировка ASCII. Основные используемые кодировки кириллицы

Соответствие между набором символов и набором числовых значений называется кодировкой символа. При вводе в компьютер текстовой информации происходит ее двоичное кодирование. Код символа хранится в оперативной памяти компьютера. В процессе вывода символа на экран производится обратная операция — декодирование, т. е. преобразование кода символа в его изображение.

Присвоенный каждому символу конкретный числовой код фиксируется в кодовых таблицах. Одному и тому же символу в разных кодовых таблицах могут соответствовать разные числовые коды. Необходимые перекодировки текста обычно выполняют специальные программы-конверторы, встроенные в большинство приложений.

Как правило, для хранения кода символа используется один байт (восемь битов), поэтому коды символов могут принимать значение от 0 до 255. Такие кодировки называют однобайтными. Они позволяют использовать 256 символов ( N = 2I = 28 = 256 ). Таблица однобайтных кодов символов называется ASCII (American Standard Code for Information Interchange — Американский стандартный код для обмена информацией). Первая часть таблицы ASCII-кодов (от 0 до 127) одинакова для всех IBM-PC совместимых компьютеров и содержит:

  • коды управляющих символов;
  • коды цифр, арифметических операций, знаков препинания;
  • некоторые специальные символы;
  • коды больших и маленьких латинских букв.

Вторая часть таблицы (коды от 128 до 255) бывает различной в различных компьютерах. Она содержит коды букв национального алфавита, коды некоторых математических символов, коды символов псевдографики. Для русских букв в настоящее время используется пять различных кодовых таблиц: КОИ-8, СР1251, СР866, Мас, ISO.

В последнее время широкое распространение получил новый международный стандарт Unicode. В нем отводится по два байта (16 битов) для кодирования каждого символа, поэтому с его помощью можно закодировать 65536 различных символов ( N = 216 = 65536 ). Коды символов могут принимать значение от 0 до 65535.

Примеры решения задач

Пример. С помощью кодировки Unicode закодирована следующая фраза:

Я хочу поступить в университет!

Оценить информационный объем этой фразы.

Решение. В данной фразе содержится 31 символ (включая пробелы и знак препинания). Поскольку в кодировке Unicode каждому символу отводится 2 байта памяти, для всей фразы понадобится 31 ⋅ 2 = 62 байта или 31 ⋅ 2 ⋅ 8 = 496 битов.

Ответ: 32 байта или 496 битов.

Алгоритмизация и программирование

Алгоритмы, виды алгоритмов, описание алгоритмов. Формальное исполнение алгоритмов

Термин «алгоритм», впервые употребленный в современном значении. Лейбницем (1646–1716), является латинизированной формой имени великого персидского математика Мухаммеда бен Муссы аль-Хорезми (ок. 783 – ок. 850). Его книга «Об индийском счете» в XII в. была переведена на латинский язык и пользовалась широкой популярностью не одно столетие. Имя автора европейцы произносили как Алгоритми (Algorithmi), и со временем так стали называть в Европе всю систему десятичной арифметики.

Научное определение алгоритма дал А. Чёрч в 1930 году. В наше время понятие алгоритма является одним из основополагающих понятий вычислительной математики и информатики.

Алгоритм — это точное и полное описание последовательности действий над заданными объектами, позволяющее получить конечный результат.

Можно сказать, что алгоритм решения какой-либо задачи — это последовательность шагов реализации (или нахождения) этого решения, а процесс построения алгоритма (алгоритмизация) — разложение задачи на элементарные действия или операции.

Область математики, известная как теория алгоритмов, посвящена исследованию свойств, способов записи, области применения различных алгоритмов, а также созданию новых алгоритмов. Теория алгоритмов находит широкое применение в различных областях деятельности человека — в технике, производстве, медицине, образовании и т. д. Появление компьютера позволило решать чрезвычайно сложные, трудоемкие задачи.

Определение алгоритма для применения в области информатики нуждается в некотором уточнении. Во-первых, решение задач в информатике всегда связано с преобразованием информации, а значит, исходными данными и результатом работы алгоритма должна быть информация. Это может быть представлено в виде схемы.

Во-вторых, алгоритмы в информатике предназначены для реализации в виде компьютерных программ или для создания некоторой компьютерной технологии. Для выполнения алгоритма требуется конечный объем оперативной памяти и конечное время.

Основные требования, предъявляемые к алгоритмам:

Дискретность (прерывность): алгоритм должен представлять решение задачи в виде последовательности простых (или ранее определенных) этапов (шагов). Каждый шаг алгоритма формулируется в виде инструкций (команд).

Определенность (детерминированность; лат. determinate — определенность, точность): шаги (операции) алгоритма должны допускать однозначную трактовку и быть понятными для исполнителя алгоритма. Это свойство указывает на то, что любое действие в алгоритме должно быть строго определено и описано для каждого случая.

Массовость: алгоритм должен давать решение не только для конкретного набора значений, а для целого класса задач, который определяется диапазоном возможных исходных данных (область применимости алгоритма). Свойство массовости подразумевает использование переменных в качестве исходных данных алгоритма.

Результативность: алгоритм должен давать конкретный результат, т. е. должны быть рассмотрены все возможные ситуации и для каждой из них получен результат. Под результатом может пониматься и сообщение о том, что задача решения не имеет.

Конечность: количество шагов алгоритма должно быть конечным.

Эффективность: количество шагов и сами шаги алгоритма должны быть такими, чтобы решение могло быть найдено за конечное и, более того, приемлемое время.

Для оценки и сравнения алгоритмов существует много критериев. Чаще всего анализ алгоритма (или, как говорят, анализ сложности алгоритма) состоит в оценке временных затрат на решение задачи в зависимости от объема исходных данных. Используются также термины «временная сложность», «трудоемкость» алгоритма. Фактически эта оценка сводится к подсчету количества основных операций в алгоритме, поскольку каждая из них выполняется за заранее известное конечное время. Кроме временной сложности, должна оцениваться также емкостная сложность, т. е. увеличение затрат памяти в зависимости от размера исходных данных. Оценка сложности дает количественный критерий для сравнения алгоритмов, предназначенных для решения одной и той же задачи. Оптимальным (наилучшим) считается алгоритм, который невозможно значительно улучшить в плане временных и емкостных затрат.

Анализом сложности алгоритмов, исследованием классов задач, решаемых с помощью алгоритмов той или иной сложности, и многими другими теоретическими вопросами занимается специальная область информатики.

Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых элементов.

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур:

  1. следование — образуется из последовательности действий, следующих одно за другим;
  2. ветвление (развилка) — обеспечивает в зависимости от результатов проверки условия (ДА или НЕТ) выбор одного из альтернативных путей алгоритма;
  3. цикл — обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.

Для описания алгоритмов наиболее распространены следующие методы (языки):

Обычный язык. Изложение алгоритма ведется на обычном языке с разделением на последовательные шаги.

Блок-схемы. Графическое изображение алгоритма с помощью специальных значков-блоков.

Формальные алгоритмические языки (языки программирования). При записи алгоритмов используют строго определенный набор символов и составленных из них специальных зарезервированных слов. Имеют строгие правила построения языковых конструкций.

Псевдокод. Синтез алгоритмического и обычного языков. Элементы некоторого базового алгоритмического языка используются для строгой записи базовых структур алгоритма.

Словесный способ (запись на обычном языке) не имеет широкого распространения, т. к. таких описаний есть ряд недостатков:

  • строго не формализуемы;
  • достаточно многословны;
  • могут допускать неоднозначность толкования отдельных предписаний;
  • сложные задачи с анализом условий, с повторяющимися действиями трудно представляются в словесной или словесно-формульной форме.

Графический способ представления информации является более наглядным и компактным по сравнению со словесным. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий. Такое графическое представление алгоритма называется блок-схемой. Определенному типу действия (ввод/вывод данных, проверка условия, вычисление выражения, начало и конец алгоритма и т. п.) соответствует определенная геометрическая фигура — блочный символ. Блоки соединяются между собой линиями переходов, которые определяют очередность выполнения действий.

Название символа Графическое изображение Комментарии
Пуск/Останов (блоки начала и конца алгоритма) Указание на начало или конец алгоритма
Ввод/Вывод данных (блоки ввода, вывода Организация ввода/вывода в общем виде
Процесс (операторные блоки) Выполнение вычислительного действия или последовательности действий (можно объединять в один блок), которые изменяют значение, форму представления или размещение данных
Условие (условный блок) Выбор направления выполнения алгоритма. Если условие, записанное внутри ромба, выполняется, то управление передается по стрелке «да», в противном случае — по стрелке «нет». Таким образом, реализуется процесс изменения последовательности вычислений в зависимости от выполнения условия
Начало цикла с параметром Используется для организации циклических конструкций с известным количеством итераций (повторений) и известным шагом изменения параметра цикла. Внутри блока для параметра цикла указываются через запятую его начальное значение, конечное значение и шаг изменения. Цикл, для которого неизвестно количество повторений, записывается с помощью условного и операторных блоков
Предопределенный процесс Используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращения к библиотечным подпрограммам
Печать сообщений (документ) Вывод результатов на печать

При составлении блок-схемы необходимо проверять выполнение следующих условий:

  1. из каждого прямоугольника и параллелограмма (кроме конца алгоритма) должна выходить только одна стрелка;
  2. в каждый прямоугольник и параллелограмм (кроме начала алгоритма) должна входить хотя бы одна стрелка;
  3. в каждый ромб должна входить хотя бы одна стрелка, а выходить из него — две стрелки, помеченные словами «ДА» и «НЕТ».

Псевдокод занимает промежуточное положение между естественным языком и языками программирования. В псевдокоде не приняты строгие синтаксические правила для записи команд, что отличает формальные языки программирования. Однако в псевдокоде есть некоторые конструкции, которые присущи формальным языкам, что облегчает переход от записи алгоритма на псевдокоде к записи алгоритма на языке программирования. Псевдокоды бывают разные. Рассмотрим учебный (школьный) алгоритмический язык АЯ.

Алфавит учебного алгоритмического языка является открытым. В него могут быть введены любые понятные всем символы: русские и латинские буквы, знаки математических операций, знаки отношений, специальные знаки и т. д. Кроме алфавита, в алгоритмической нотации определяются служебные слова, которые являются неделимыми. Служебные слова обычно выделяются жирным шрифтом или подчеркиванием. К служебным словам относятся:

алг — заголовок алгоритма нц — начало цикла знач
нач — начало алгоритма кц — конец цикла и
кон — конец алгоритма дано или
арг — аргумент надо не
рез — результат если да
цел — целый то нет
сим — символьный иначе при
лит — литерный всё выбор
лог — логический пока утв
вещ — вещественный для ввод
таб — таблица от вывод
длин — длина до  

Общий вид записи алгоритма на псевдокоде:

алг — название алгоритма (аргументы и результаты)

дано — условие применимости алгоритма

надо — цель выполнения алгоритма

нач — описание промежуточных величин

последовательность команд (тело алгоритма)

кон

Часть алгоритма от слова алг до слова нач называется заголовком, а часть, заключенная между словами нач и кон,телом алгоритма (исполняемой частью алгоритма).

В предложении алг после названия алгоритма в круглых скобках указываются характеристики (арг, рез) и тип значения (цел, вещ, сим, лит или лог) всех входных (аргументы) и выходных (результаты) переменных. При описании массивов (таблиц) используется служебное слово таб, дополненное именем массива и граничными парами по каждому индексу элементов массива.

Команды учебного языка:

1. Оператор присваивания, который обозначается «:=» и служит для вычисления выражений, стоящих справа, и присваивания их значений переменным, указанным в левой части. Например, если переменная а имела значение 5, то после выполнения оператора присваивания а := а + 1, значение переменной а изменится на 6.

2. Операторы ввода/вывода:

ввод (список имен переменных)

вывод (список вывода)

Список вывода может содержать комментарии, которые заключаются в кавычки.

3. Оператор ветвления (с использованием команды если...то… иначе…всё; выбор);

4. Операторы цикла (с использованием команд для, пока, до).

Запись алгоритма на псевдокоде:

Здесь в предложениях дано и надо после знака «|» записаны комментарии. Комментарии можно помещать в конце любой строки, они существенно облегчают понимание алгоритма.

При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается произвольное изображение команд. Вместе с тем такая запись позволяет понять человеку суть дела и исполнить алгоритм. Однако алгоритм, предназначенный для исполнения на компьютере, должен быть записан на строго формализованном языке. Такой язык называется языком программирования, а запись алгоритма на этом языке — компьютерной программой.

Для решения одной и той же задачи можно предложить несколько алгоритмов. Алгоритмы составляются с ориентацией на определенного исполнителя алгоритма. У каждого исполнителя имеется свой конечный набор команд, которые для него понятны и исполняемы. Этот набор называется системой команд исполнителя. Пользуясь системой команд, исполнитель может выполнить алгоритм формально, не вникая в содержание поставленной задачи. От исполнителя требуется только строгое выполнение последовательности действий, предусмотренной алгоритмом. Таким образом, в общем случае алгоритм претерпевает изменения по стадиям:

  • первая стадия — алгоритм должен быть представлен в форме, понятной человеку, который его разрабатывает;
  • вторая стадия — алгоритм должен быть представлен в форме, понятной исполнителю алгоритма (вторая стадия может отсутствовать, если исполнять алгоритм будет сам разработчик).

Примеры решения задач

Пример 1. Исполнитель Утроитель может выполнить только две команды, которым присвоены номера:

1 — вычти 1;

3 — умножь на 3.

Первая команда уменьшает число на 1, вторая — увеличивает его втрое.

Написать набор команд (не более пяти) получения из числа 3 числа 16. В ответе указать только номера команд.

Решение.

1 (3 – 1 = 2)

3 (2 * 3 = 6)

3 (6 * 3 = 18)

1 (18 – 1 = 17)

1 (17 – 1 = 16)

Ответ: 13311

Пример 2. Имеется Исполнитель алгоритма, который может передвигаться по числовой оси.

Система команд Исполнителя алгоритма:

1. «Вперед N» (Исполнитель алгоритма делает шаг вперед на N единиц).

2. «Назад M» (Исполнитель алгоритма делает шаг назад на M единиц).

Переменные N и M могут принимать любые целые положительные значения. Известно, что Исполнитель алгоритма выполнил программу из 50 команд, в которой команд «Назад 2» на 12 больше, чем команд «Вперед 3». Других команд в программе не было. Какой одной командой можно заменить эту программу, чтобы Исполнитель алгоритма оказался в той же точке, что и после выполнения программы?

Решение.

1. Найдем, сколько было команд «Вперед», а сколько «Назад». Учитывая, что общее количество команд равно 50 и что команд «Назад» на 12 больше, чем команд «Вперед». Получим уравнение: x + (x + 12) = 50, где x — количество команд «Вперед». Тогда общее количество команд «Вперед»: x = 19, а количество команд «Назад»: 19 + 12 = 31.

2. Будем вести отсчет от начала числовой оси. Выполнив 19 раз команду «Вперед 3», Исполнитель алгоритма оказался бы на отметке числовой оси 57 (19 * 3 = 57). После выполнения 31 раз команды «Назад 2» (31 * 2 = 62) он оказался бы на отметке –5 (57 – 62 = –5).

3. Все эти команды можно заменить одной — «Назад 5».

Ответ: команда«Назад 5».

Пример 3. Черепашка является исполнителем для создания графических объектов на рабочем поле. При движении Черепашка оставляет след в виде линии. Черепашка может исполнять следующие команды:

Название команды Параметр Действия исполнителя
вп Число шагов Продвигается в направлении головы на указанное число шагов
нд Число шагов Продвигается в направлении, противоположном направлению головы на указанное число шагов
пр Число градусов Поворачивается направо относительно направления, заданного головой черепашки
лв Число градусов Поворачивается налево относительно направления, заданного головой черепашки

Для записи повторяющихся действий (цикла) используется команда Повтори. В этой команде два параметра: первый задает количество повторений (итераций), а второй — список команд которые должны повторяться (тело цикла); список заключается в квадратные скобки.

Записать для исполнителя Черепашка алгоритмы:

а) построения квадрата со стороной 100;

б) построения правильного шестиугольника со стороной 50.

в) построения изображения цифры 4, если голова Черепашки смотрит на север.

Ответ: а) Повтори 4 [вп 100 пр 90]; б) Повтори 6 [вп 50 пр 360/6]; в) вп 100; повтори [лв 135 вп 50].

Пример 4. Два игрока играют в следующую игру (это вариант восточной игры). Перед ними лежат три кучки камней, в первой из которых 2, во второй — 3, в третьей — 4 камня. У каждого игрока неограниченно много камней. Игроки ходят по очереди. Ход состоит в том, что игрок или удваивает число камней в одной из кучек, или добавляет по два камня в каждую из них. Выигрывает игрок, после хода которого либо в одной из кучек становится не менее 15 камней, либо общее число камней в трех кучках становится не менее 25. Кто выиграет при безошибочной игре обоих игроков — игрок, делающий первый ход, или игрок, делающий второй ход? Каким должен быть первый ход выигрывающего игрока? Ответ следует обосновать.

Решение. Удобнее всего составить таблицу возможных ходов обоих игроков. Заметим, что в каждом случае возможны всего четыре варианта хода. В таблице курсивом выделены случаи, которые сразу же приносят поражение игроку, делающему этот ход (например, когда камней в какой-либо кучке становится больше или равно 8, другой игрок непременно выигрывает следующим ходом, удваивая количество камней в этой кучке). Из таблицы видно, что при безошибочной игре обоих игроков первый всегда выиграет, если первым ходом сделает 4, 5, 6. У второго игрока в этом случае все ходы проигрышные.

  1-й ход 2-й ход
Начало 1-й игрок 2-й игрок 1-й игрок 2-й игрок
2,3,4 4,3,4 8,3,4 выигрыш  
4,6,4 8,6,4 выигрыш
4,12,4 выигрыш
4,6,8 выигрыш
6,8,6 выигрыш
4,3,8 выигрыш  
6,5,6 12,5,6 выигрыш
6,10,6 выигрыш
6,5,12 выигрыш
8,7,8 выигрыш
  2,6,4 4,6,4 8,6,4 выигрыш
4,12,4 выигрыш
4,6,8 выигрыш
6,8,6 выигрыш
2,12,4 выигрыш  
2,6,8 выигрыш
4,8,6 выигрыш
2,3,8 выигрыш    
4,5,6 8,5,6 выигрыш  
4,10,6 выигрыш
4,5,12 выигрыш
6,7,8 выигрыш

Пример 5. Записано 7 строк, каждая из которых имеет свой номер. В нулевой строке после номера записана цифра 001. Каждая последующая строка содержит два повторения предыдущей строки и добавленной в конец большой буквы латинского алфавита (первая строка — A, вторая строка — B и т. д.). Ниже приведены первые три строкиєтой записи (в скобках указан номер строки):

(0) 001

(1) 001001A

(2) 001001A001001AB

Какой символ находится в последней строке на 250-м месте (считая слева направо)?

Примечание. Первые семь букв латинского алфавита: A, B, C, D, E, F, G.

Решение. Найдем длину каждой строки. Длина каждой следующей строки в два раза больше длины предыдущей плюс один символ, длина строк составит:

(0) 3 символа;

(1) 3*2+1=7;

(2) 7*2+1=15;

(3) 15*2+1=31;

(4) 31*2+1=63;

(5) 63*2+1=127;

(6) 127*2+1=255 символов.

Так как задано 7 строк, а нумерация начинается с нулевой строки, последняя строка имеет номер 6 и содержит 255 символов. Последний символ в строке — F. Предпоследний элемент — E, далее идут символы D, C, B, A, 1 (по правилу формирования строк). Таким образом, 250-й символ — это 1.

Ответ: 1.

Пример 6. Имеется фрагмент алгоритма, записанный на учебном алгоритмическом языке:

n := Длина(а)

k = 2

b := Извлечь(а, k)

нц для i от 7 до n – 1

с := Извлечь(а, i)

b := Склеить(b, с)

кц

Здесь переменные а, b, с — строкового типа; переменные n, i — целые.

В алгоритме используются следующие функции:

Длина(х) — возвращает количество символов в строке х. Имеет тип «целое».

Извлечь(х, i) — возвращает i-й символ слева в строке х. Имеет строковый тип.

Склеить(х, у) — возвращает строку, в которой находятся все символы строки х, а затем все символы строки у. Имеет строковый тип.

Какое значение примет переменная b после выполнения этого фрагмента алгоритма, если переменная а имела значение «ВОСКРЕСЕНЬЕ»?

Решение. Находим общее число символов в строке а, получим, что n = 11.

Выполняя команду b := Извлечь(а, k) при k = 2, получим, что b примет значение "О".

В цикле последовательно, начиная с 7-го символа строки а и заканчивая предпоследним (n – 1), извлекаем символ из строки а и присоединяем к строке b.

В результате получим слово "ОСЕНЬ" (символы с номерами 2 + 7 + 8 + 9 + 10).

Ответ: "ОСЕНЬ"

Пример 7. Леонардо из Пизы, известный как Фибоначчи, был первым из великих математиков Европы позднего Средневековья. Числовой ряд, который называется его именем, получился в результате решения задачи о кроликах, которую Фибоначчи изложил в своей «Книге Абака», написанной в 1202 году. Он выглядит так:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,...

В этом ряду каждое следующее число, начиная с третьего, равно сумме двух предыдущих. Составить словесный алгоритм и блок-схему проверки принадлежности введенного числа n ряду Фибоначчи.

Решение. Словесный алгоритм:

  1. Ввести число n.
  2. Установить значение первых трех чисел Фибоначчи: 1, 1, 2 (сумма двух предыдущих чисел).
  3. Пока введенное число n больше очередного числа Фибоначчи, взять два последних числа Фибоначчи и получить из них новое число Фибоначчи.
  4. Если число Фибоначчи равно введенному n или было введено число n = 1, значит, что было введено число Фибоначчи, в противном случае — введенное число не является числом Фибоначчи.

Приведенный словесный алгоритм в пункте 1, 2 содержит начальные установки, в пункте 3 — цикл с условием, а пункт 4 — это вывод результата работы алгоритма.

Блок-схема алгоритма:

Обозначения:

F — текущее число ряда Фибоначчи;

F1 и F2 — два предыдущих числа ряда Фибоначчи для числа F;

n — число, для которого требуется определить, является ли оно числом из ряда Фибоначчи.

Использование основных алгоритмических конструкций: следование, ветвление, цикл

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.

Базовая структура СЛЕДОВАНИЕ указывает на то, что управление передается последовательно от одного действия к другому.

Учебный алгоритмический язык Язык блок-схем
действие 1
действие 2

действие n

Использование исключительно этой структуры возможно лишь для достаточно простых задач, ход решения которых не меняется в зависимости от конкретных исходных данных и состоит в последовательном выполнении определенных операций.

В качестве примера рассмотрим решение простой задачи.

Пример. Найти y(x) = x2 + 3x + 5, используя только операции умножения и сложения.

Решение. На рис. приводятся два алгоритма, реализующие решение поставленной задачи.

Порядок вычисления y(x) в первом случае — обычный, а во втором — (x + 3) x + 5. Обе формулы эквивалентны, но в первом случае для вычисления необходимо 2 умножения, 2 сложения и 3 переменных (x, y, z), а во втором используются 1 умножение, 2 сложения и 2 переменные (x, y).

Приведенный пример показывает, что даже простые задачи могут решаться с помощью различных вариантов алгоритмов.

Обратите внимание, как в блоке следования используется оператор присваивания.

Операция присваивания — важнейшая операция во всех языках программирования. С помощью присваивания переменные получают новые значения: в левой части инструкции ставится идентификатор величины, а в правой части — выражение, значение которого можно определить.

В операторах присваивания используется либо привычный знак равенства, либо сочетание двоеточия и знака равенства «:=». Поскольку знак присваивания — это не знак равенства, возможны записи вида Х := Х + 1 или А := А – В. Нужно учитывать, что оператор присваивания будет выполняться только в том случае, если значения всех переменных правой части уже определены.

Базовая структура ВЕТВЛЕНИЕ (РАЗВИЛКА) используется в случае, когда выполнение программы может измениться в зависимости от результата проверки условия и пойти двумя разными (альтернативными) путями. Другими словами, условие является некоторым высказыванием (предикатом) и может быть истинным или ложным (принимать значение TRUE или FALSE). Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.

Различают две структуры этого типа — полную и неполную. В случае полной структуры, если условие выполняется (является истинным), вслед за ним выполняется действие 1, иначе — действие 2. В случае неполной структуры, если условие выполняется (является истинным), то вслед за ним выполняется действие 1, иначе ничего не происходит.

Важную роль в операторах ветвления играют содержащиеся в них условия. В простейшем случае условиями служат отношения между величинами. Условия с одним отношением называют простыми условными выражениями, или простыми условиями. В некоторых задачах необходимы более сложные условия, состоящие из нескольких простых, например условие А < X < С, т. е. Х < А и (Х > C) (возможна запись (Х < А) and (Х > C)). Объединение нескольких простых условий в одно образует составное условное выражение, или составное условие. Составные условия образуются с помощью логических операторов not (отрицание), and (логическое И), or (логическое ИЛИ), хоr (исключающее ИЛИ).

Структура ВЕТВЛЕНИЕ существует в четырех основных вариантах:

если — то (неполная структура);

если — то — иначе (полная структура);

выбор (неполный);

выбор — иначе (полный).

Учебный алгоритмический язык Язык блок-схем
1) если — то

если условие

то действие 1

всё

2) если — то — иначе

если условие

то действие 1

иначедействие 2

всё

3) выбор

выбор

при условие 1: действие 1

при условии 2: действие 2

при условие N: действие N

всё

4) выбор — иначе

выбор

при условие 1: действие 1

при условие 2: действие 2

при условие N: действие N + 1

иначе действия N + 1

всё

В качестве простого примера рассмотрим нахождение модуля числа y(x) = |x|. Решение приведено на рис. для случаев полной (а) и неполной (б) структур ветвления.

Базовая структура ЦИКЛ служит для записи алгоритмов, в которых некоторая часть алгоритма (тело цикла) должна повторяться несколько раз. Количество повторений цикла может определяться разными способами, в зависимости от которых различают три вида циклов.

1. Цикл с предусловием, или цикл «пока». При реализации этого цикла сначала проверяется условие его выполнения. Пока оно выполняется, будут происходить повторения тела цикла. Отсюда и другое его название — цикл «пока». Если условие не выполняется при первой проверке, то тело цикла не будет выполняться вообще. После выхода из цикла управление передается следующей структуре. Для того чтобы избежать зацикливания, т. е. бесконечного цикла, в теле цикла обязательно должны изменяться параметры, записанные в условии.

Учебный алгоритмический язык Язык блок-схем

нц

пока условие

тело цикла (последовательность действий)

кц

2. Цикл с параметром. Этот вид цикла удобно использовать в тех случаях, когда заранее извесно количество повторений цикла. Вводится понятие счетчика цикла, который по умолчанию считается равным либо 1, либо –1. В некоторых случаях изменение счетчика цикла (приращение) указывают явно. Для организации цикла необходимо задать верхнюю и нижнюю границы изменения счетчика цикла. В зависимости от значения верхней и нижней границы определяется шаг цикла (1 или −1), т. е. значение счетчика цикла.

Учебный алгоритмический язык Язык блок-схем

нц

для i от i1 до i2

тело цикла (последовательность действий)

кц

3. Цикл с постусловием, или цикл «до». При реализации этого цикла условие завершение цикла проверяется после тела цикла. В этом случае тело цикла всегда выполняется хотя бы один раз. Цикл будет выполняться до выполнения условия, отсюда и другое название — цикл «до». А пока условие не выполнено, будет повторяться тело цикла (выполнение условия, таким образом, является условием окончания цикла). В этом случае, как и в цикле «пока», необходимо предусмотреть в теле цикла изменение параметров условия цикла.

Учебный алгоритмический язык Язык блок-схем

нц

тело цикла (последовательность действий)

до условие

кц

Для всех видов цикла предусмотрена возможность досрочного выхода, т. е. прерывание работы цикла.

Помимо трех рассмотренных видов цикла существует и так называемый интерационные циклы. Особенностью итерационного цикла является то, что число повторений операторов тела цикла заранее неизвестно. Для его организации используется цикл типа пока. Выход из итерационного цикла осуществляется в случае выполнения заданного условия. На каждом шаге вычислений происходит последовательное приближение и проверка условия достижения искомого результата. Классический пример — вычисление суммы ряда с заданной точностью.

Алгоритм, в состав которого входит итерационный цикл, называется итерационным алгоритмом. Итерационные алгоритмы используются при реализации итерационных численных методов. В итерационных алгоритмах необходимо обеспечить обязательное условие выхода из цикла (сходимость итерационного процесса). В противном случае произойдет зацикливание алгоритма, т. е. не будет выполняться основное свойство алгоритма — результативность.

Пример. Вычислить сумму знакопеременного ряда $S=x-{x^2}/{2}+{x^3}/{3}-{x^4}/{4}+...$ с заданной точностью $ε$.

Для данной знакочередующейся бесконечной суммы требуемая точность будет достигнута, когда очередное слагаемое станет по абсолютной величине меньше $ε$.

Решение. Запишем блок-схему алгоритма, где будем использовать следующие обозначения:

$S$ — частичная сумма ряда (стартовое значение равно 0);

$ε$ — точность вычисления;

$i$ — номер очередного слагаемого;

$m$ — значение очередного слагаемого;

$p$ — числитель очередного слагаемого.

На псевдокоде алгоритм можно записать следующим образом:

Примечание. Следует отметить, что ряд будет сходящимся только при выполнении условия 0 < х < 1.

Возможны случаи, когда внутри тела цикла необходимо повторить некоторую последовательность операторов, т. е. организовать внутренний цикл. Такая структура получила название цикла в цикле, или вложенного цикла. Глубина вложения циклов (количество вложенных друг в друга циклов) может быть различной.

При использовании такой структуры для экономии времени выполнения необходимо выносить из внутреннего цикла во внешний все действия, результаты которых не зависят от параметра внутреннего цикла.

Пример. Вычислить сумму элементов для заданной матрицы (таблицы из 5 строк и 3 столбцов) А(5,3).

Решение. Алгоритм решения задачи на псевдокоде:

Основная часть блок-схемы нахождения суммы элементов матрицы будет иметь следующий вид:

Здесь порядок выполнения вложенных циклов следующий: счетчик внутреннего цикла изменяется быстрее, т. е. для i = 1(внешний цикл), j пробегает значения 1, 2, 3 (внутренний цикл); далее i = 2, j опять пробегает значения 1, 2, 3 и т. д.

Примеры решения задач

Пример 1. Дан фрагмент блок-схемы некоторого алгоритма.

Определить значение переменной А после выполнения фрагмента алгоритма.

Какие исправления нужно внести, чтобы изменение значения переменной А происходило в обратном порядке?

Как записать исходный алгоритм с помощью двух других видов цикла?

Решение. Если представить пошаговое выполнение алгоритма в виде таблицы, получим:

Начальные установки: A = 100000; N = 2
1-я итерация A = 10000; N = 4
2-я итерация A = 1000; N = 6
3-я итерация A = 100; N = 8
4-я итерация A = 10; N = 10
5-я итерация, выполнилось условие выхода: N > 10 Ответ: А = 1; N = 12

Таблица обратного хода изменения значения А будет иметь такой вид:

Начальные установки: A = 1; N = 2
1-я итерация A = 10; N = 4
2-я итерация A = 100; N = 6
3-я итерация A = 1000; N = 8
4-я итерация A = 10000; N = 10
5-я итерация, выполнилось условие выхода: N > 10 А = 100000; N = 12

Блок-схема алгоритма примет такой вид:

В алгоритме нужно изменить начальное значение А и операцию деления заменить операцией умножения. Счетчик N в данном случае изменять не нужно.

В приведенной в условии блок-схеме используется цикл с предусловием. Для цикла с параметром блок-схема алгоритма будет иметь такой вид:

Понятно, что цикл должен выполниться пять раз. В заголовке цикла необходимо указать начальное и конечное значение счетчика цикла N (приращение по умолчанию равно 1).

Для цикла с постусловием блок-схема исходного алгоритма имеет такой вид:

В данной схеме условие завершения цикла находится после тела цикла. Цикл, в отличие от цикла с предусловием, выполняется, пока значение условия ложно.

Пример 2. Сколько раз выполнится тело цикла в программе?

Q := 27; P := 36

нц пока (div(Q, 5) = div(P, 7))

Q := Q + 2

P := P + 3

кц

Примечание. Результат функции div(X, Y) — целая часть от деления X на Y.

Решение. Рассмотрим пошаговое выполнение алгоритма, оформив его в виде таблицы.

Начальные установки Q := 27; P := 36
Проверка выполнения условия div(27, 5) = 5;
div(36, 7) = 5;
5 = 5
1-я итерация; выполнение тела цикла Q := 29; P := 39
Проверка выполнения условия div(29, 5) = 5;
div(39, 7) = 5;
5 = 5
2-я итерация; выполнение тела цикла Q := 31; P := 42
Проверка выполнения условия div(31, 5) = 6;
div(42, 7) = 6;
6 = 6
3-я итерация; выполнение тела цикла Q := 33; P := 45
Проверка выполнения условия div(33, 5) = 6;
div(45, 7) = 6
6 = 6
4-я итерация; выполнение тела цикла Q := 35; P := 48
Проверка выполнения условия. Условие не выполняется, цикл завершает работу div(35, 5) = 7;
div(48, 7) = 6;
7 ≠ 6

Ответ: цикл выполнится 4 раза.

Использование переменных. Объявление переменной (тип, имя, значение). Локальные и глобальные переменные

Величины служат для описания объектов и процессов в материальном мире. Каждая величина имеет некоторые характеристики. В программировании понятие величины несколько отличается от понятия величины в естественных науках — оно является более формальным. Величиной называют объект — переменную, с которым связывается определенное множество значений. Такому объекту присваивается имя — идентификатор. Понятие переменной в программировании сходно с понятием переменной в математике. Например, в алгебраическом равенстве C = F + 2B – 5 значение переменной С зависит от значений переменных F и B, указанных в правой части равенства. Например, при F = 2 и B = 6, С = 9. Такое же равенство можно записать в программе, например на языке программирования Бейсик: C = F + 2*B – 5. В терминах языка программирования C, F и B — это идентификаторы (имена) переменных.

Переменная — это объект программы, имеющий имя и изменяемое значение. Для хранения переменной в памяти компьютера выделено определенное место.

Переменные величины в отличие от постоянных величин (констант) могут со временем менять свое значение. Константой называется величина, которая в ходе выполнения программы не меняет своего значения.

Назначение программы состоит в обработке информации, при этом, конечно, основную роль играют переменные.

Переменная характеризуется:

  • идентификатором;
  • типом;
  • значением.

Каждая переменная имеет свой идентификатор, т. е. свое уникальное имя. Имя переменной показывает, в каком месте памяти компьютера она хранится, значение переменной считывается из указанного ее именем места в памяти. Двух переменных с одним именем в одном программном модуле (блоке) быть не должно. Примерами идентификаторов величин могут быть, например, следующие последовательности символов: a1, SUMMA, X_1, Y_1, My_program.

Во многих языках программирования существуют некоторые ограничения на задания имен переменных. Имена составляются из букв и цифр; первой литерой должна быть буква. Знак подчеркивания «_» считается буквой, его удобно использовать, чтобы улучшить восприятие длинных имен переменных. Разумно давать переменным логически осмысленные имена, в соответствии с их назначением. Нельзя использовать в качестве имен зарезервированные (служебные) слова языка программирования.

Тип переменной — это диапазон (набор) всех значений, которые может принимать данная переменная. Тип переменной определяет, какие операции для нее допустимы. Другими словами, тип переменной — это характеристика, которая для величины определяет:

  • необходимый размер памяти;
  • диапазон значений, которые может принимать величина;
  • возможные операции над величиной (подразумеваются действия относительно использования величин в выражениях);
  • формы представления величин (или формат представления величин).

Стандартные типы — это числовые, литерные и логические типы.

Числовой тип, к которому относятся целые и вещественные величины, позволяет оперировать с числами. Целые числа, которые в учебном алгоритмическом языке составляют тип цел, сверху ограничены положительным числом Nmax, а снизу — отрицательным числом Nmin. Значения Nmax и Nmin определяются объемом ячеек памяти, в которые записываются целые числа. Обычно для целых чисел выделяется два байта памяти, соответственно границы диапазона равны [Nmin = –32768 и Nmax = 32767]. Считается, что все операции с величинами типа цел выполняются по обычным правилам арифметики, за одним исключением: возможны две операции деления div и mod.

Операция div обозначает целочисленное деление. При делении с точностью до целых чисел получается два результата — частное и остаток. Знак результата берется по обычным правилам, а полученный остаток игнорируется. Например:

23 div 5 = 4;

2 div 6 = 0;

(–13) div 5 = –2;

(–13) div (–5) = 2.

Операция mod определяет остаток при делении двух целых чисел.

Например:

23 mod 5 = 3;

2 mod 6 = 2;

(–13) mod 5 = –3;

(–13) mod (–5) = 3;

8 mod 2 = 0.

Целые числа чаще всего используются в простых арифметических выражениях и выступают в программах в качестве различных счетчиков и значений индексов.

К другому числовому типу относятся вещественные (вещ) величины. Значения вещественных величин могут изображаться в форме с фиксированной запятой (например, 0,3333; 2,0; –4,567 и т. д.) и с плавающей запятой (например, 7,0*102, 5,173*10–3 и т. д.).

В отличие от целых чисел, действия с вещественными числами могут быть неточными — это связано с ошибками округлений. Объем памяти, который предоставляется для хранения значений вещественной переменной, — от 4 до 10 байтов (в зависимости от выбранного формата числа). Над числовыми величинами можно выполнять как арифметические операции, так и операции сравнения (>, <, >=, <=, =, \ ).

Литерный тип, включающий символы и строки, дает возможность работать с текстом. Литерные величины — это произвольные последовательности символов: букв, цифр, знаков препинания, пробела и других специальных знаков (возможными символами могут быть символы таблицы ASCII). Литерные величины обычно заключаются в кавычки: "а", "В", "СТРОКА", "1_2_3". В учебном алгоритмическом языке литерные величины обозначаются как лит. В других языках программирования (например, в Паскале) различают символьный (char) и строковый (string) типы. Величины символьного типа состоят из одного символа и занимают в памяти всего 1 байт. Величины строкового типа представляют собой различные последовательности символов, которые предусмотрены кодовой страницей, установленной в компьютере. Длина строки может составлять от 0 до 255 символов. Над всеми литерными величинами возможны операции сравнения. С помощью отношений типа "a" < "b", "b" < "c", "c" < "d",... выполняется упорядочение литерных величин (сортировка по возрастанию или убыванию).

Еще одной операцией, характерной для символьных и строковых величин, является операция конкатенации (слияния): "a" + "b" = "ab".

Логический тип позволяет определять логические переменные, которые могут принимать только два значения: истина (true) или ложь (false). Для представления логической величины достаточно одного бита, однако, поскольку место в памяти выделяется по байтам, логической величине отводится минимальная «порция» памяти — один байт. Над логическими величинами можно выполнять все стандартные логические операции.

Значение — это непосредственно то, чему равна переменная в конкретный момент времени. Это может быть число, символ, текст и т. д. Значение переменной в программе можно задать двумя способами: присваиванием и с помощью процедуры ввода.

Оператор присваивания

Во всех языках программирования оператор присваивания является одним из важнейших. С помощью присваивания переменные получают новые значения, например:

Д := 13;

D1 := C;

Х := Х + 1.

В операторах присваивания используется либо обычный знак равенства, либо сочетание двоеточия и знака равенства «:=». Поскольку знак присваивания — это не знак равенства, возможны записи вида Х := Х + 1 или А := А – В. Нужно учитывать, что оператор присваивания будет выполняться только в том случае, если значения всех переменных в правой части уже определены и выполняется соответствие типов для правой и левой части оператора присваивания. Например, С := А > B выполнится только в том случае, если для переменной С определен булевский (логический) тип. Операция присваивания может быть применена к большинству типов величин. Однако для каждого из типов предусмотрен свой набор операций.

Локальные, глобальные и общие переменные

Каждая переменная характеризуется областью действия или областью видимости. По зоне видимости в языках программирования различают локальные и глобальные переменные. Первые доступны только конкретному подалгоритму (вспомогательному алгоритму, подпрограмме, модулю), вторые — всему алгоритму (программе). С распространением модульного и объектного программирования появились еще и общие переменные, доступные для определенных уровней иерархии подпрограмм.

Ограничение зоны видимости придумали как для возможности использовать одинаковые имена переменных, так и для защиты от ошибок, связанных с неправомерным использованием переменных.

Имена локальных и глобальных переменных могут совпадать. При этом действует правило: локальные переменные на время работы подпрограмм, в которых они объявлены, экранируют, т. е. перекрывают глобальные переменные. Например, если в основной программе переменная с именем с определена как логическая, а в подпрограмме идентификатор с используется для задания вещественной переменной, то только на время работы подпрограммы с можно использовать как число — в остальных случаях идентификатор с определяет логическую переменную.

Примеры решения задач

Пример 1. Значения заданных переменных А, В перераспределить таким образом, чтобы А и В поменялись значениями.

Решение. Возможны два варианта решения:

С использованием промежуточной переменной С Без использования дополнительной переменной
C := A;
A := B;
B := C
A := A + B;
B := A – B;
A := A – B

Пример 2. Определить значение переменной A после выполнения фрагмента алгоритма:

Решение. Оформим решение в виде таблицы.

A B D Условие
2 –2 10 да
–4 –2 12 да
8 –2 14 да
–16 –2 16 да
32 –2 18 да
–64 –2 20 да
128 –2 22 нет — окончание цикла

Ответ: А = 128.

Пример 3. Определить значение переменной S:

A := –1; B := 1

нц пока A + B < 10

A := A + 1; B := B + A

кц

S := A * B

Решение. Оформим решение в виде таблицы.

A B A + B S
–1 1 0  
0 1 1  
1 2 3  
2 4 6  
3 7 10 — условие выхода из цикла 21

Ответ: S = 21.

Пример 4. Записать последовательность операций присваивания (:=), которая позволит определить номера подъезда и этажа по номеру N квартиры девятиэтажного дома, считая, что на каждом этаже по 4 квартиры, а нумерация квартир начинается с первого подъезда.

Решение.

4 * 9 = 36 {количество квартир в подъезде}

Х := (N – 1) div 36 + 1 {номер подъезда}

N := N – (X – 1) * 36 { N ∊[1, 36] }

Y := (N – 1) div 4 + 1 {номер этажа}

Например, для квартиры с номером 150 получим:

Х = (150 – 1) div 36 + 1 = 4 + 1 = 5;

N = 150 – (5 – 1) * 36 = 6;

Y = (6 – 1) div 4 + 1 = 2.

Ответ: квартира с номером 150 находится в пятом подъезде, на втором этаже.

Работа с массивами (заполнение, считывание, поиск, сортировка, массовые операции и др.)

Величины числового, литерного, логического типов представляются одним значением и относятся к простым типам данных. Характерной особенностью простых типов является атомарность, т. е. они не могут вмещать элементы других типов. Типы данных, которые не удовлетворяют данному условию, называются структурированными, или составными. Например, массивы, записи, строки, множества, файлы. Структурированный тип характеризуется множеством элементов, из которых складываются данные этого типа. Элементы структурированного типа называются компонентами. В свою очередь компонента структурированного типа может принадлежать также к структурированному типу. Из простых данных сложные структуры могут получаться двумя способами:

  1. объединением однородных элементов данных;
  2. объединением разнородных элементов данных.

В первом случае примером могут служить массивы, а во втором — записи.

Информацию удобно представлять в виде таблиц. Наиболее привычными являются прямоугольные таблицы, т. е. таблицы, состоящие из строк и столбцов. В том числе таблицы, состоящие из единственной строки или единственного столбца, — линейные таблицы, имеющие одно «измерение».

Табличные величины относятся к составным величинам, т. к. включают в себя другие величины. В учебном алгоритмическом языке табличный тип обозначается как таб. Таблицы в программировании принято называть массивами. В математике прототипом массивов являются матрицы и векторы.

Массив

Массив — это упорядоченный набор данных, имеющий одно имя и состоящий из фиксированного числа однотипных элементов.

Каждый элемент массива снабжен индексом. Индекс — это порядковый номер элемента, определяющий его положение в массиве. Таким образом, элементы массива идентифицируются с помощью имени массива и с помощью своих индексов.

Количество элементов массива называется размерностью массива.

Итак, массив характеризуется:

  • размерностью;
  • базовым типом элементов;
  • типом индекса (может быть только порядковым типом);
  • множеством значений для индекса.

Массив может быть одномерным (вектор) и многомерным (матрица).

Одномерный массив содержит одно измерение; каждый элемент массива обозначается идентификатором (именем) массива с индексом. Многомерный массив содержит n-е количество измерений; каждый элемент массива обозначается идентификатором массива для n индексов.

Существует несколько способов заполнения массива данными:

  1. непосредственное присваивание значений элементам;
  2. заполнение массива произвольными элементами, случайными числами;
  3. ввод значений элементов с клавиатуры или чтение из файла.

Необходимо заметить, что заполнение массива происходит поэлементно. Для этого используют оператор цикла. Вывод массива также осуществляется поэлементно с помощью оператора цикла.

Примечание. Строковый тип данных напоминает одномерный массив, в котором элементами являются символы. К примеру, строку "МАМА КУПИЛА ХЛЕБ" можно рассматривать как одномерный массив из 16 символов (включая пробелы). Эту строку можно обозначить идентификатором (например, Novost) и пронумеровать все символы, считая их элементами массива: Novost (l)  = "М", ... Novost (16) = "Б".

Однако для работы с символьной информацией более гибким инструментом является не одномерный массив, а строка (string). Это связано с тем, что количество символов в строке, в отличие от массива, не фиксировано. Благодаря этому к строке можно без ограничений применять стандартные операции и функции, предназначенные для работы с текстом.

Задачи, связанные с обработкой массивов, как и все задачи вообще, условно можно разделить на два вида:

  1. стандартные задачи;
  2. задачи, решение которых требует знания вспомогательных алгоритмов, специальных методов и приемов.

Очевидно, что без умения решать задачи первых двух видов невозможно решать нестандартные задачи.

Стандартные задачи обработки массивов

Пример 1. В массиве А каждый элемент равен 0 или 1. Заменить все нули единицами и наоборот.

Решение. Достаточно одного оператора присваивания в теле цикла:

A[i] := 1 – A[i].

Пример 2. В массиве каждый элемент равен 0, 1 или 2. Переставить элементы массива так, чтобы сначала располагались все 0, затем все 1 и, наконец, все 2. Дополнительный массив не использовать.

Решение. Можно не переставлять элементы массива, а подсчитать количество 0, 1, 2 и заново заполнить массив требуемым образом.

Пример 3. Даны два n-элементных массива Х и Y одного типа. Поменять местами все Xi и Yi, (i = 1...n), не используя промежуточные величины.

Решение. Обмен можно выполнить в цикле для всех i от 1 до n с помощью серии из трех операторов присваивания:

X[i] := X[i] + Y[i]

Y[i] := X[i] – Y[i]

X[i] := X[i] – Y[i].

Пример 4. Записать алгоритм нахождения максимального элемента массива А(n) и его номера.

Решение. На псевдокоде требуемый алгоритм запишется следующим образом:

Примечание. Если таких элементов несколько, будет найден номер последнего.

Пример 5. Найти сумму элементов одномерного массива А(n).

Решение. На псевдокоде алгоритм нахождения суммы запишется следующим образом:

Примечание. Для нахождения суммы положительных элементов массива вместо оператора

S := S + A[i] необходимо записать:

если A[i] > 0

то S := S + A[i]

всё

Пример 6. Записать алгоритм вычисления произведения элементов столбцов заданной вещественной двумерной матрицы A(n, m).

Решение. На псевдокоде алгоритм запишется следующим образом:

Пример 7. Подсчитать количество элементов для заданной целочисленной матрицы A(n, m), равных ее максимальному элементу.

Решение. На псевдокоде алгоритм запишется следующим образом:

Пример 8. Запиcать алгоритм обмена элементами строк с номерами P и Q в заданной вещественной матрице A(n, m).

Решение. На псевдокоде алгоритм запишется следующим образом:

Пример 9. Включить заданное число D в одномерный упорядоченный по возрастанию массив F(n) с сохранением упорядоченности.

Решение. На псевдокоде алгоритм запишется следующим образом:

Пример 10. Сформировать новый массив B из элементов целочисленного массива A(n), для которых выполняется условие D < Ai < C.

Решение. На псевдокоде алгоритм запишется следующим образом:

Пример 11. Найти в заданном целочисленном массиве А(m) хотя бы одну пару элементов, совпадающих по значению.

Решение. На псевдокоде алгоритм запишется следующим образом:

Поиск — одна из важных невычислительных задач. Проведение поиска в упорядоченном и неупорядоченном массивах отличается. В неупорядоченном массиве, если нет никакой дополнительной информации об элементе поиска, его выполняют с помощью последовательного просмотра всего массива. Такой поиск называют линейным. В любом случае существуют два условия окончания поиска:

  1. элемент найден;
  2. весь массив просмотрен — элемент не найден.

В упорядоченном массиве поиск можно значительно ускорить, применяя метод половинного деления, или бинарный поиск. Его идея заключается в следующем. Пусть фиксированный массив упорядочен по неубыванию (ai ≤ ai + 1). Случайно выбранный элемент am (обычно берут средний элемент) сравнивают с элементом поиска х. Если он меньше х, то искомый элемент может быть среди элементов am + i, ..., аn, т. е. в правой половине массива. Если он больше х — то среди элементов левой части массива. Если же он равен х, то поиск успешно заканчивается.

К стандартным задачам относятся задачи сортировки массива. Сортировка массива — это перерасположение элементов массива в заданном порядке. Основная цель сортировки — облегчить последующий поиск. Методы условно разделяют по главной идее алгоритма, а реализуются они целым семейством алгоритмов.

К простым методам сортировки относят:

  • сортировку с помощью обмена (метод пузырька);
  • сортировку с помощью прямого включения;
  • сортировку с помощью выбора.

Сортировка с помощью обмена. При использовании этого метода сортировки соседние элементы массива сравниваются и при необходимости меняются местами до тех пор, пока массив не будет полностью упорядочен. Повторные проходы массива каждый раз сдвигают наименьший (наибольший) элемент оставшейся части массива к левому его концу. Метод широко известен под названием «пузырьковая сортировка», т. к. большие (меньшие) элементы массива, подобно пузырькам, «всплывают» на соответствующую позицию. Основной фрагмент программы содержит два вложенных цикла, причем внутренний цикл удобнее выбрать с убывающим шагом.

Алгоритм сортировки массива A(n) по возрастанию на псевдокоде:

Сортировка с помощью прямого включения (вставки). На каждом шаге этого метода массив разделен на две части: левую, уже отсортированную, и правую, еще не отсортированную. Первый элемент правой части вставляется в левую часть массива так, чтобы левая часть осталась отсортированной. В результате отсортированная часть увеличивается на один элемент, а неотсортированная — на один элемент уменьшается. Таким образом, на каждом шаге алгоритма сортировки вставками приходится выполнять две операции: поиск позиции для вставки элемента и собственно его вставку с последующим сдвигом на одну позицию вправо от элементов отсортированной части. Этот сдвиг «стирает» первый элемент неотсортированной части. Сначала отсортированным подмассивом считаем первый элемент, а остальная часть массива относится к неотсортированной части. Поскольку операции сравнения и перемещения чередуются друг с другом, этот способ сортировки часто называют просеиванием или погружением.

Сортировка с помощью прямого выбора. При сортировке этим методом сначала выбирается наименьший (наибольший) элемент массива и меняется местами с первым. Затем выбирается наименьший (наибольший) среди оставшихся (n – 1) элементов и меняется местами со вторым и т. д. до тех пор, пока не останется один наибольший (наименьший) элемент. Сортировка осуществляется с помощью двух вложенных циклов.

Приведенные алгоритмы сортировки не требуют дополнительной оперативной памяти. Время выполнения алгоритмов сортировки пропорционально количеству операций сравнения и перестановки элементов. Сортировка массива из $n$ элементов методом выбора главного элемента требует выполнения ${n^2}/{2}$ операций сравнения и n операций обмена элементами. Метод сортировки вставками требует ${n^2}/{4}$ операций сравнения и столько же операций обмена, а метод пузырьковой сортировки — ${n^2}/{2}$ операций сравнения и столько же операций обмена. Таким образом, из трех рассмотренных методов сортировки массива методы вставки и выбора приблизительно эквивалентны, а обменная сортировка — медленнее. Кроме того, что в методе вставки исходные элементы могут поступать последовательно, а в методе выбора они должны быть в наличии до начала сортировки.

Примеры решения задач

Пример 1. Одномерный массив, содержащий десять элементов, заполняется по следующему закону: A[1] = 1; A[2] = X; A[i] = 2 * X * A[i – 1] – A[i – 2], где i = 3, 4, ..., 10. Каким будет значение A[5] при X = 1?

Решение. Представим значения первых пяти элементов массива А, полученные по заданному закону при Х = 1:

A[1] = 1; A[2] = Х = 1;

A[3] = 2 * Х * A[2] – A[1] = 2 * 1 * 1 – 1 = 1;

A[4] = 2 * Х * A[3] – A[2] = 2 * 1 * 1 – 1 = 1;

A[5] = 2 * Х * A[4] – A[3] = 2 * 1 * 1 – 1 = 1.

Таким образом, значение A[5] при Х = 1 будет равно 1.

Ответ: 1.

Пример 2. Задан двумерный массив А(n, n). Определить, что вычисляет приведенный фрагмент алгоритма:

Решение. В данном алгоритме переменной S присваивается значение 0. Затем в структуре циклов по переменным i и j каждый из элементов массива Аij сравнивается с нулем (А[i, j] > 0) и если элементы Аij положительны, то квадраты А[i, j]^2 положительных элементов Аij увеличивают значение суммы S (S := S + A[i, j]^2).

Ответ: фрагмент алгоритма вычисляет сумму квадратов положительных элементов массива.

Пример 3. Задан фрагмент алгоритма, использующий двумерный массив (таблицу) М(n, n), два одномерных массива A(n), B(n) и переменную X. Определить назначение массивов А и В и переменной.

Решение. Представим фрагмент алгоритма словесно.

  1. Переменной X присвоить значение 0.
  2. Переменной i присвоить значение 1.
  3. Если i ≤ n, то перейти к следующему пункту; в противном случае — конец фрагмента алгоритма.
  4. Элементу одномерного массива А с индексом i присвоить значение элемента двумерного массива М, находящегося в i-й строке и первом столбце.
  5. Элементу одномерного массива В с индексом i присвоить значение 1.
  6. Переменной j присвоить значение 1.
  7. Если j ≤ n, то перейти к следующему пункту; в противном случае — к п. 13.
  8. Если М[i, j] < A[i], то перейти к следующему пункту; иначе — к п. 11.
  9. Элементу A[i] присвоить значение элемента массива М, находящегося в i-й строке и j-м столбце.
  10. Элементу В[i] присвоить значение переменной j.
  11. Переменной Х присвоить значение суммы X + M[i, j].
  12. Переменной j присвоить значение суммы j + 1 и вернуться к п. 7.
  13. Переменной i присвоить значение суммы i + 1 и вернуться к п. 3.

Таким образом, анализ алгоритма показывает, что переменная X накапливала сумму всех элементов массива М; массив А — минимальные элементы соответствующих строк массива М; массив В — индексы (порядковые номера столбцов) минимальных элементов в соответствующих строках массива М.

Пример 4. Составить алгоритм определения наличия среди элементов главной диагонали заданной целочисленной матрицы A(n, m) хотя бы одного положительного нечетного элемента.

Решение. Для всех элементов Аij главной диагонали выполняется условие i = j. Определение наличия нечетных элементов выполняется с помощью операции mod (остаток от целочисленного деления), при этом, если результат mod равен 1, — число нечетное.

Алгоритм:

Структурирование задачи при ее решении для использования вспомогательного алгоритма. Вспомогательные алгоритмы: процедуры и функции

Разработка алгоритмов решения задач на компьютере требует определенных навыков. При построении алгоритма нужно стремиться к тому, чтобы запись алгоритма была понятной и наглядной. Кроме того, внося изменения в алгоритм, желательно не перестраивать его полностью. Эти требования можно удовлетворить, если придерживаться структурного подхода.

Самым важным преимуществом структурного подхода является возможность нисходящего программирования, благодаря которой можно двигаться от крупных задач к более мелким. Крупная задача будет разбиваться на менее крупные блоки, те в свою очередь — на меньшие блоки и т. д. Каждый блок алгоритма должен быть максимально самостоятельным и логически завершенным.

Разбиение на блоки должно определяться внутренней логикой задач. Процесс разбиения завершается, когда решение исходной задачи сводится к решению ряда простых задач, для которых легко построить алгоритм. На каждом шаге этого процесса происходит детализация, т. е. переход от общих задач к частным, которые в свою очередь детализируются в виде конкретных подзадач. Такой метод называется методом пошаговой детализации. Таким образом, при структурном подходе можно комбинировать не только базовые структуры (следование, ветвление, цикл), но и подключать алгоритмы, написанные ранее. Алгоритмы, которые целиком используются в составе других алгоритмов, называются вспомогательными, или подалгоритмами.

Если вспомогательный алгоритм в процессе работы программы выполняется многократно, отличаясь только параметрами, то обычно прибегают к оформлению вспомогательного алгоритма в виде подпрограммы — алгоритма-процедуры, или алгоритма-функции.

Подпрограмма — это именованный, логически законченный алгоритм, который оформляется специальным образом и может многократно использоваться при решении более общей задачи.

Описание подпрограмм можно сравнить с записываемой в математике формулой «в общем виде», в которую при расчетах подставляются конкретные значения. Далеко не каждую задачу можно свести к единственной формуле, но всегда можно записать алгоритм ее решения, а значит, подпрограмма — это инструкция по решению некоторой задачи. Как и формулу, подпрограмму можно использовать для обработки различных данных, передаваемых из главной программы или других подпрограмм.

В языках программирования подпрограмма является частью основной программы, ее описание располагается в описательной части программы. Структура подпрограммы такая же, как и основной программы; различие заключается лишь в оформлении заголовка подпрограммы. Заголовок подпрограммы состоит из служебного слова — идентификатора подпрограммы (имени подалгоритма) — и списка формальных параметров (список параметров не обязателен, допускаются подпрограммы без параметров). При вызове процедуры из текста программы вместо формальных параметров подставляются фактические параметры, при этом соблюдаются следующие правила:

  • количество формальных и фактических параметров должно совпадать, причем соответствие между параметрами команды вызова и формальными параметрами процедуры устанавливается по порядку следования: первый фактический параметр соответствует первой переменной, записанной в заголовке подпрограммы, второй фактический параметр — второй переменной и т. д.;
  • типы соответствующих параметров команды вызова и заголовка подпрограммы должны совпадать.

Команда вызова подпрограммы выполняется в три этапа:

  1. вычисление фактических аргументов;
  2. исполнение алгоритма подпрограммы;
  3. присвоение полученных значений результатов алгоритма-подпрограммы соответствующим фактическим переменным.

Программа может содержать более одной подпрограммы; допускается использование вложенных подпрограмм, которые, в свою очередь, могут содержать свои вложенные подпрограммы.

Различают два вида подпрограмм — процедуры и функции. Имея один и тот же смысл и аналогичную структуру, процедуры и функции различаются назначением и способом их использования. Основное отличие функций от процедур заключается в том, что результатом выполнения функции является некоторое единственное значение. Функция — это алгоритмически вычисляемое выражение, которое присваивается идентификатору функции.

Подпрограммы бывают двух видов: стандартные и пользовательские. Стандартные, или встроенные, подпрограммы входят в состав языка программирования. Эти подпрограммы определенным образом организованы в специальные библиотеки. С помощью встроенных процедур и функций выполняются операции ввода/вывода, работа с файлами, обработка символьной информации, вычисление различных математических функций и т. п.

Подпрограммы, которые написаны пользователем, называются пользовательскими.

Практика: решай 6 задание и тренировочные варианты ЕГЭ по информатике