Регистрация Войти
Все для самостоятельной подготовки к ЕГЭ
Готовься к ЕГЭ по персональному плану, следи за своим прогрессом, устраняй пробелы, выполняй квесты и получай награды
или
Войти через Вконтакте
Регистрируясь, я принимаю условия пользовательского соглашения
Русский язык
Математика
Обществознание
Физика
История
Биология
Химия
Английский язык
Информатика
География
ОГЭ

Планетарная модель атома. Нуклонная модель ядра. Ядерные реакции

Теория к заданию 19 из ЕГЭ по физике

Планетарная модель атома

С целью выяснения распределения положительного заряда в атоме английский ученый Э. Резерфорд исследовал рассеяние $α$-частиц фольгой из различных веществ. Большинство а-частиц беспрепятственно, почти без отклонений, проникало через фольгу, и только $1$ из $2000$ частиц отклонялась на углы, большие $90°$. В результате этих экспериментов в 1911 г. Резерфорд предложил следующую модель строения атома.

Атом состоит из положительно заряженного ядра, вокруг которого обращаются электроны, каждый на своей орбите, подобно планетам Солнечной системы, обращающимся вокруг Солнца. Поэтому модель называют планетарной.

Расстояние от электронов до ядра очень велико по сравнению с размерами ядра. Оценки Резерфорда показали, что диаметр ядра составляет порядка $10^{-12}—10^{-13}$ см. Размер самого атома $10^{-8}$ см. Положительный заряд ядра $q_{ядра}$ связан с числом электронов $Z$ в атоме соотношением:

$q_{ядра}=+Z·e$

где $е$ — заряд электрона.

Заряд ядра и число электронов в атоме, соответственно, совпадает с порядковым номером элемента в таблице Д. И. Менделеева.

В целом атом электронейтрален. При отрыве электрона от атома или присоединении электрона к атому (в результате столкновений, например, или при различных химических процессах) могут образоваться положительно или отрицательно заряженные ионы.

Простая и наглядная модель атома Резерфорда прекрасно объясняла результаты его опытов. Однако на основании этой модели нельзя объяснить факт существования атома, его устойчивость. Согласно законам электродинамики Максвелла электрон, движущийся по орбите с немалым ускорением, должен излучать электромагнитные волны с частотой, равной частоте его обращения вокруг ядра, в результате чего в скором времени, потеряв в результате излучения всю энергию, упасть на ядро. Согласно расчетам, основанным на механике Ньютона и электродинамике Максвелла, время это составляет всего $10^{-8}$ с. В действительности ничего подобного не происходит. Нейтральные невозбужденные атомы существуют неограниченно долго.

Это несоответствие опыта выводам теории связано с попыткой применения законов классической физики к внутриатомным явлениям (которые, как оказалось, подчиняются законам квантовой механики).

Выход из создавшейся в теории атома ситуации был найден датским физиком Нильсом Бором.

Состав ядра. Нуклонная модель Гейзенберга-Иваненко

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения а-частиц через вещество. Оказалось, что почти вся масса атома ($99.95%$) сосредоточена в ядре. Размер атомного ядра имеет порядок величины $10^{-13}-10^{-12}$ см, что в $10 000$ раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода, выбитых $α$-частицами из ядер других элементов (1919—1920 гг.), привели ученого к представлению о протоне. Термин протон был введен в начале 20-х гг XX ст.

Протон (от protos — первый, символ $p$) — стабильная элементарная частица, ядро атома водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона $e=1.6·10^{-19}$ Кл. Масса протона в $1836$ раз больше массы электрона. Масса покоя протона $m_p=1.6726231·10^{-27}кг=1.007276470 а.е.м.$

Второй частицей, входящей в состав ядра, является нейтрон.

Нейтрон (от лат. neuter — ни тот, ни другой, символ $n$) — это элементарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в $1839$ раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона $m_n=1.6749286·10^{-27}кг=1.0008664902 а.е.м.$ и превосходит массу протона на $2.5$ массы электрона. Нейтрон, наряду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия $α$-частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало преграду из свинцовой пластины толщиной $10-20$ см) усиливало свое действие при прохождении через парафиновую пластину. Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это $γ$-кванты. Большая проникающая способность новых частиц, названных нейтронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании $α$-частиц в ядра бериллия происходит следующая реакция:

$↙{4}↖{9}Be{+}{}↙{2}↖{4}He{→}{}↙{6}↖{12}C{+}{}↙{0}↖{1}n$

Здесь $↙{0}↖{1}n$ — символ нейтрона; заряд его равен нулю, а относительная атомная масса приблизительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время $~15$ мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протоннонейтронную (нуклонную) модель ядра. Согласно этой модели, ядро состоит из протонов и нейтронов. Число протонов $Z$ совпадает с порядковым номером элемента в таблице Д. И. Менделеева.

Заряд ядра $Q$ определяется числом протонов $Z$, входящих в состав ядра, и кратен абсолютной величине заряда электрона $e$:

$Q=+Ze$

Число $Z$ называется зарядовым числом ядра или атомным номером.

Массовым числом ядра $А$ называется общее число нуклонов, т. е. протонов и нейтронов, содержащихся в нем. Число нейтронов в ядре обозначается буквой $N$. Таким образом, массовое число равно:

$A=Z+N$

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов.

Изотопы (от греч. isos — равный, одинаковый и topos — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов ($Z$) и различное число нейтронов ($N$).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного элемента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами $Z$ и $N$. Общее обозначение нуклидов имеет вид $↙{A}↖{Z}X_N$, где $X$ — символ химического элемента, $A=Z+N$ — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода $↖{1}H$ — протий, $↖{2}H$ — дейтерий, $↖{3}H$ — тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси ($1:4500$) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при $101.2°$С и замерзает при $+3.8°$С. Тритий $β$-радиоактивен с периодом полураспада около $12$ лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами $235$ и $238$. Изотоп $↙{92}↖{235}U$ составляет всего ${1}/{140}$ часть от более распространенного $↙{92}↖{238}U$.

Радиоактивность

Радиоактивность (от лат. radio — излучаю и activus — деятельный) — свойство атомных ядер самопроизвольно (спонтанно) изменять свой состав — заряд $Z$, массовое число $А$ путем испускания элементарных частиц или ядерных фрагментов.

Открытие радиоактивности

Явление радиоактивности было открыто Беккерелем в 1896 г. при его исследованиях люминесценции солей урана, он обнаружил спонтанное испускание неизвестного излучения. Исследование других химических элементов на предмет радиоактивности позволило в 1898 г. Марии Склодовской-Кюри во Франции (и другим ученым) обнаружить свечение тория, а затем выделить неизвестный ранее элемент — полоний (названный так в честь родины Марии Кюри — Польши). Спустя некоторое время был открыт элемент радий, дающий очень интенсивное излучение. Явление самопроизвольного излучения по предложению Марии и Пьера Кюри было названо радиоактивностью. Вскоре Э. Резерфорд и супруги Кюри установили, что радиоактивное излучение состоит из лучей трех видов: $α$-лучей, состоящих из положительных $α$-частиц (являющихся ядрами гелия), $β$-лучей, или отрицательно заряженных $β$-частиц (которые оказались электронами), и $γ$-лучей, не имеющих заряда, которые оказались $γ$-квантами (жестким электромагнитным излучением). Классический опыт, позволивший обнаружить сложный состав радиоактивного излучения, изображен на рис.. На излучение препарата радия, помещенного на дно узкого канала в куске свинца, действовало сильное магнитное поле с линиями индукции, перпендикулярными лучу. Перпендикулярно каналу располагалась фотопластинка. Вся установка размещалась в вакууме. По отклонению луча определялся заряд частиц, его составляющих.

Гамма-лучи

То, что это электромагнитная волна, было доказано опытами по дифракции на кристаллах. В ходе этих опытов была определена длина волны $γ$-лучей: от $10^{-8}$ до $10^{-11}$ см. Их проникающая способность гораздо выше, чем у рентгеновских лучей. На шкале электромагнитных волн $γ$-лучи следуют непосредственно за рентгеновскими. Скорость распространения, как у всех электромагнитных волн, — $300 000$ км/с.

Бета-лучи

Бета-лучи были идентифицированы как электроны, движущиеся со скоростями, близкими к скорости света, по сильному отклонению как в магнитном, так и электрическом поле. Скорости $β$-частиц, испущенных радиоактивным элементом, различны, что приводит к расширению пучка.

Альфа-частицы

Альфа-частицы отклоняются в магнитном и электрическом полях меньше других, что затрудняло их идентификацию. Окончательно природу $α$-частиц удалось выяснить Э. Резерфорду. С помощью экспериментов в магнитном поле он определил соотношение заряда и массы. С помощью счетчика Гейгера измерил количество частиц, испущенных препаратом за определенное время, а с помощью электрометра определил их суммарный заряд, рассчитав, таким образом, заряд одной $α$-частицы ($+2$). Экспериментально природа альфа-частиц была подтверждена с помощью спектрального анализа газа, образовавшегося за несколько дней в резервуаре, в котором Резерфорд собирал $α$-частицы. Каждая $α$-частица захватывала два электрона и превращалась в гелий.

Радиоактивные превращения. Альфа-, бета-, гамма-распад

В процессе исследования явления радиоактивности обнаружилось, что радиоактивные элементы в результате испускания радиоактивного излучения превращаются в другие элементы. При радиоактивном распаде происходит цепочка последовательных превращений атомов.

После того, как было открыто атомное ядро, сразу стало ясно, что именно оно претерпевает превращения при радиоактивных распадах. Ведь на электронных оболочках нет $α$-частиц, а уменьшение числа электронов оболочки превращает атом в ион, анев новый химический элемент.

Правило смещения. Превращения ядер подчиняются так называемому правилу смещения, сформулированному впервые Содди: при $α$-распаде ядро теряет положительный заряд $2е$, и масса его убывает приблизительно на четыре атомные единицы массы. В результате элемент смещается на две клетки к началу Периодической системы. Это записывается так:

$↙{Z}↖{M}X{→}↙{Z-2}↖{M-4}Y{+}↙{2}↖{4}He$

Здесь элемент обозначается общепринятыми символами. Заряд ядра указывается в виде индекса внизу слева от символа элемента, а атомная масса — в виде индекса слева вверху символа. Для $α$-частицы, являющейся ядром атома гелия, применяют обозначение $ ↙{2}↖{4}Не$.

Явление $β$-распада состоит в том, что ядро самопроизвольно испускает электрон $е^-$ и электронное антинейтрино ${ν_e}↖{→}$ или позитрон $е^+$ (частица с положительным элементарным электрическим зарядом и массой, равной массе электрона) и электронное нейтрино $ν_e$ (${ν_e}↖{∼}$ и $ν_e$ — нейтральные элементарные частицы с очень малой, возможно нулевой массой покоя, уносящие при $β$-распаде часть энергии), превращаясь в ядро с тем же массовым числом $М$:

электронный $β$-распад:$↙{Z}↖{M}X{→}↙{Z-2}↖{M}Y{+}↙{-1}↖{0}e{+}{ν_e}↖{∼}$ ($β^-$ - распад).

позитронный $β$-распад:$↙{Z}↖{M}X{→}↙{Z-1}↖{M}Y{+}↙{+1}↖{0}e{+}ν_e$ ($β^+$ - распад).

Здесь $↙{-1}↖{0}e$ обозначает электрон: индекс $0$ сверху означает, что масса его очень мала по сравнению с атомной единицей массы. После $β^-$-распада элемент смещается на одну клетку ближе к концу Периодической системы после $β^-$-распада на одну клетку дальше.

При электронном $β$-распаде один из нейтронов ядра превращается в протон, а при позитронном $β$-распаде один из протонов ядра превращается в нейтрон.

Гамма-излучение не сопровождается изменением заряда; масса же ядра меняется ничтожно мало.

Правила смещения показывают, что при радиоактивном распаде сохраняется суммарный электрический заряд и приближенно сохраняется относительная атомная масса ядер.

Возникшие при радиоактивном распаде ядра обычно тоже радиоактивны.

Ядерные реакции. Деление и синтез ядер

Ядерные реакции — это процессы, идущие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав исходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки (например, нейтронами) делится на два ядра разных атомов. При реакциях синтеза происходит превращение легких ядер в более тяжелые.

Искусственное превращение атомных ядер. Впервые в истории человечества искусственное (целенаправленное) превращение ядер осуществил Резерфорд в 1919 г. Бомбардируя $α$-частицами большой энергии, испускаемыми радием, ядра атома азота $↙{7}↖{14}N$, Резерфорд обнаружил появление протонов — ядер атома водорода. В первых опытах регистрация протонов проводилась методом сцинтилляций, позднее более точно — в камере Вильсона. При этом ядро атома азота превращается в ядро изотопа кислорода:

$↙{7}↖{14}N{+}{}↙{2}↖{4}He{→}{}↙{8}↖{17}O{+}{}↙{1}↖{1}H$

Другими исследователями были обнаружены превращения под влиянием а-частиц ядер фтора, натрия, алюминия и др., сопровождающиеся испусканием протонов. Ядра тяжелых элементов не испытывали превращений. Очевидно, что их большой электрический заряд не позволял $α$-частице приблизиться к ядру вплотную.

Ядерная реакция на быстрых протонах

Для осуществления ядерной реакции необходимо приближение частиц вплотную к ядру, что возможно для частиц с очень большой энергией (особенно для положительно заряженных частиц, которые отталкиваются от ядра). Такая энергия (до $10^5$ МэВ) сообщается в ускорителях заряженных частиц протонам, дейтронам и др. частицам. Этот метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивным элементом (энергия которых составляет около $9$ МэВ).

Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расщепить литий на две $α$-частицы:

$↙{3}↖{7}Li{+}{}↙{1}↖{1}H{→}{}↙{2}↖{4}He{+}{}↙{2}↖{4}He$

Ядерные реакции на нейтронах

Открытие нейтронов явилось поворотным пунктом в исследовании ядерных реакций. Лишенные заряда нейтроны беспрепятственно проникают в атомные ядра и вызывают их изменения, например:

$↙{13}↖{27}Al{+}{}↙{0}↖{1}n{→}{}↙{11}↖{24}Na{+}{}↙{2}↖{4}He$

Великий итальянский физик Энрико Ферми обнаружил, что медленные нейтроны (около $10^4$ эВ) более эффективны в реакциях ядерных превращений, чем быстрые нейтроны (около $10^5$ эВ). Поэтому быстрые нейтроны замедляют в обыкновенной воде, содержащей большое число ядер водорода — протонов. Эффект замедления объясняется тем, что при столкновении шаров одинаковой массы происходит наиболее эффективная передача энергии.

Законы сохранения заряда, массового числа и энергии

Многочисленные эксперименты по различного рода ядерным взаимодействиям показали, что во всех без исключения случаях сохраняется суммарный электрический заряд частиц, участвующих во взаимодействии. Другими словами, суммарный электрический заряд частиц, вступающих в ядерную реакцию, равен суммарному электрическому заряду продуктов реакции (как это и следует ожидать согласно закону сохранения заряда для замкнутых систем). Кроме того, в ядерных реакциях обычного типа (без образования античастиц) наблюдается сохранение массового ядерного числа (т. е. полного числа нуклонов).

Сказанное подтверждается всеми приведенными выше типами реакций (суммы соответствующих коэффициентов при ядрах с левой и правой сторон уравнений реакции равны).

Оба закона сохранения относятся также и к ядерным превращениям типа радиоактивных распадов.

В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц.

Энергетическим выходом реакции называется разность энергий покоя ядер и частиц до реакции и после реакции. Согласно сказанному ранее, энергетический выход ядерной реакции равен также изменению кинетической энергии частиц, участвующих в реакции.

Если кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то говорят о выделении энергии, в противном случае — оее поглощении. Последний случай осуществляется при бомбардировке азота $α$-частицами, часть энергии переходит во внутреннюю энергию вновь образовавшихся ядер. При ядерной реакции кинетическая энергия образовавшихся ядер гелия на $17.3$ МэВ больше кинетической энергии вступавшего в реакцию протона.

Реакция Электрический заряд Массовое число
$↙{4}↖{9}Be{+}{}↙{2}↖{4}He{→}{}↙{6}↖{12}C{+}{}↙{0}↖{1}n$ $4+2=6+0$ $9 + 4=12+1$
$↙{7}↖{14}N{+}{}↙{2}↖{4}He{→}{}↙{8}↖{17}O{+}{}↙{1}↖{1}H$ $7+2=8+1$ $14 + 4=17+1$
$↙{3}↖{7}Li{+}{}↙{1}↖{1}H{→}{}↙{2}↖{4}He{+}{}↙{2}↖{4}He$ $3+1=2+2$ $7+1=4+4$
$↙{13}↖{27}Al{+}{}↙{0}↖{1}n{→}{}↙{11}↖{24}Na{+}{}↙{2}↖{4}He$ $13 + 0=11 + 2$ $27+ 1 = 24 + 4$
$↙{92}↖{239}U{→}{}↙{93}↖{239}Np{+}{}↙{-1}↖{0}e$ $92 = 93-1$ $239 = 239 + 0$
$↙{93}↖{239}U{→}{}↙{94}↖{239}Pu{+}{}↙{-1}↖{0}e$ $93 = 94-1$ $239 = 239 + 0$

Деление и синтез ядер

Деление ядер — процесс, при котором из одного атомного ядра возникают два (реже три) ядра-осколка, близких по массе.

Этот процесс выгоден для всех $β$-стабильных ядер с массовым числом $A > 100$.

Деление ядер урана было обнаружено в 1939 г. Ганом и Штрасманом, которые однозначно доказали, что при бомбардировке нейтронами ядер урана $U$ появляются радиоактивные ядра с массами и зарядами, примерно в два раза меньшими, чем масса и заряд ядра $U$. В том же году Л. Мейтнер и О. Фриш ввели термин «деление ядер» и отметили, что при этом выделяется огромная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно обнаружили, что при делении происходит испускание нескольких нейтронов (нейтроны деления). На основании этого была выдвинута идея самоподдерживающейся цепной реакции деления и использования деления ядер в качестве источника энергии. Основой современной ядерной энергетики служит деление ядер $↙{92}↖{235}U$ и $↖{239}Pu$ поддействиемнейтронов.

Деление ядра возможно благодаря тому, что масса покоя тяжелого ядра больше суммы масс покоя осколков, возникающих при делении. Такой процесс энергетически выгоден.

Механизм деления ядра объясняется на основе капельной модели, согласно которой сгусток нуклонов напоминает капельку заряженной жидкости. Ядро удерживают от распада ядерные силы притяжения, большие, чем силы кулоновского отталкивания, действующие между протонами и стремящиеся разорвать ядро.

Ядро $↙{92}↖{235}U$ имеет форму шара. После поглощения нейтрона оно возбуждается и деформируется, приобретая вытянутую форму, и растягивается до тех пор, пока силы отталкивания между половинками вытянутого ядра не станут больше сил притяжения, действующих в перешейке. После этого ядро разрывается на две части. Осколки под действием кулоновских сил отталкивания разлетаются со скоростью, равной ${1}/{30}$ скорости света.

Испускание нейтронов в процессе деления, о котором говорилось выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре растет с увеличением атомного номера, и для образовавшихся при делении осколков число нейтронов оказывается большим, чем это допустимо для ядер атомов с меньшими номерами. г

Деление обычно происходит на осколки неравной массы. Эти осколки радиоактивны. После серии $β$-распадов в конце концов получаются стабильные ионы.

Кроме вынужденного, описанного выше, существует и спонтанное деление ядер урана, открытое в 1940 г. советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления равен $10^{16}$ лет, что в два миллиона раз больше периода полураспада при $α$-распаде урана.

Синтез ядер осуществляется в термоядерных реакциях. Термоядерные реакции — это реакции слияния легких ядер при очень высокой температуре. Выделяющаяся при слиянии (синтезе) энергия оказывается наибольшей при синтезе легких элементов, обладающих минимальной энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое яро гелия с большей энергией связи:

$↙{1}↖{2}H{+}{}↙{1}↖{3}H{→}{}↙{2}↖{4}He{+}{}↙{0}↖{1}n$

При таком процессе ядерного синтеза выделяется значительная энергия ($17.6$ Мэв), равная разности энергий связи тяжелого ядра $↙{2}↖{4}Не$ и двух легких ядер $↙{2}↖{1}Н$ и $↙{1}↖{3}Н$. Образующийся при реакциях нейтрон приобретает $70%$ этой энергии. Сравнение энергии, приходящейся на один нуклон в реакциях ядерного деления ($0.9$ Мэв) и синтеза ($17.6$ Мэв), показывает, что реакция синтеза легких ядер энергетически более выгодна, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших $10^{-14}$ м, на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Оно может быть преодолено только за счет большой кинетической энергии ядер, превышающей энергию их кулоновского отталкивания. Соответствующие расчеты показывают, что кинетическая энергия ядер, необходимая для реакции синтеза, может быть достигнута при температурах порядка сотен миллионов градусов, поэтому эти реакции называются термоядерными.

Термоядерный синтез — реакция, в которой при высокой температуре, большей $107$ К, из легких ядер синтезируются более тяжелые.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на $4$ млн тонн.

Большую кинетическую энергию, необходимую для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. Затем при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют решающую роль в эволюции химического состава вещества во Вселенной. Все эти реакции сопровождаются выделением энергии, излучаемой звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, необходимые для его осуществления, вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

$↙{1}↖{0}n{+}{}↙{3}↖{6}Li{→}{}↙{2}↖{4}He{+}{}↙{1}↖{3}H$

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение $0.1-1$ с. Однако существует уверенность в том, что рано или поздно термоядерные реакторы будут созданы.

Пока же удалось осуществить лишь неуправляемую реакцию синтеза взрывного типа в водородной бомбе.

Цепные ядерные реакции

Ядерные цепные реакции — это ядерные реакции, в которых частицы, вызывающие их, образуются и как продукты этих реакций. Такой реакцией является деление урана и некоторых трансурановых элементов (например, $↖{239}Рu$) под действием нейтронов. Впервые она была осуществлена Э. Ферми в 1942 г. После открытия деления ядер У. Зинн, Л. Силард и Г. Н. Флеров показали, что при делении ядра урана $U$ вылетает больше одного нейтрона: $n+U→A+B+ν$. Здесь $А$ и $В$ — осколки деления с массовыми числами $А$ от $90$ до $150$, $ν$ — число вторичных нейтронов.

Коэффициент размножения нейтронов. Для течения цепной реакции необходимо, чтобы среднее число освобожденных нейтронов в данной массе урана не уменьшалось со временем, или чтобы коэффициент размножения нейтронов $k$ был больше или равен единице.

Коэффициентом размножения нейтронов называют отношение числа нейтронов в каком-либо поколении к числу нейтронов предшествующего поколения. Под сменой поколений понимают деление ядер, при котором поглощаются нейтроны старого поколения и рождаются новые нейтроны.

Если $k≥1$, то число нейтронов увеличивается с течением времени или остается постоянным, и цепная реакция идет. При $k < 1$ число нейтронов убывает, и цепная реакция невозможна.

В силу ряда причин из всех ядер, встречающихся в природе, для осуществления цепной ядерной реакции пригодны лишь ядра изотопа $↙{92}↖{235}U$. Коэффициент размножения определяется: 1) захватом медленных нейтронов ядрами $↙{92}↖{235}U$ с последующим делением и захватом быстрых нейтронов ядрами $↙{92}↖{235}U$ и $↙{92}↖{238}U$, также с последующим делением; 2) захватом нейтронов без деления ядрами урана; 3) захватом нейтронов продуктами деления, замедлителем и конструктивными элементами установки; 4) вылетом нейтронов из делящегося вещества наружу.

Лишь первый процесс сопровождается увеличением числа нейтронов. Для стационарного течения реакции $k$ должно быть равно $1$. Уже при $k=1.01$ почти мгновенно произойдет взрыв.

Образование плутония. В результате захвата изотопом урана $↙{92}↖{238}U$ нейтрона образуется радиоактивный изотоп $↙{92}↖{239}U$ с периодом полураспада $23$ мин. При распаде возникает первый трансурановый элемент нептуний:

$↙{92}↖{239}U{→}{}↙{93}↖{239}Np{+}{}↙{-1}↖{0}e$

$β$-Радиоактивный нептуний (с периодом полураспада около двух дней), испуская электрон, превращается в следующий трансурановый элемент — плутоний:

$↙{93}↖{239}Np{→}{}↙{94}↖{239}Pu{+}{}↙{-1}↖{0}e$

Период полураспада плутония $24 000$ лет, и его важнейшим свойством является способность делиться под влиянием медленных нейтронов так же, как и изотоп $↙{92}↖{235}U$. С помощью плутония может быть осуществлена цепная реакция с выделением огромного количества энергии.

Цепная реакция сопровождается выделением огромной энергии: при делении каждого ядра выделяется $200$ МэВ. При делении $1$ г ядер урана выделяется такая же энергия, как при сжигании $3$ т угля или $2.5$ т нефти.

Ядерный реактор

Ядерный реактор — это установка, содержащая ядерное топливо, в которой осуществляется управляемая цепная реакция деления.

Ядра урана, особенно изотопа $↙{92}↖{235}U$ наиболее эффективно захватывают медленные нейтроны, вероятность захвата которых с последующим делением ядер в сотни раз больше, чем быстрых. Поэтому в ядерных реакторах, работающих на естественном уране, используют замедлители нейтронов для повышения коэффициента размножения нейтронов.

Основными элементами ядерного реактора являются: 1) ядерное горючее ($↙{92}↖{235}U,{}↙{92}↖{239}Pu,{}↙{92}↖{238}U$ и др.); 2) теплоноситель для вывода энергии, образующейся при работе реактора (вода, жидкий натрий и др.); 3) устройство для регулирования скорости реакции (вводимые в рабочее пространство реактора стержни, содержащие кадмий или бор — вещества, которые хорошо поглощают нейтроны).

Снаружи реактор окружают защитной оболочкой из бетона с железным наполнителем, задерживающей $γ$-излучение и нейтроны. Лучшим замедлителем считается тяжелая вода. Обычная вода сама захватывает нейтроны и превращается в тяжелую воду. Хорошим замедлителем является графит, ядра которого не поглощают нейтроны.

Критическая масса. Коэффициент размножения $k$ может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения. Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная ядерная реакция.

Критические размеры системы и соответственно критическая масса определяются типом ядерного горючего, замедлителем и конструктивными особенностями реактора. Для чистого (без замедлителя) $↙{92}↖{235}U$, имеющего форму шара, критическая масса приблизительно равна $50$ кг. Радиус шара равен примерно $9$ см (плотность урана очень велика). Применяя замедлители нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до $250$ г.

Управление реактором осуществляется введением в активную зону стержней, позволяющих в любой момент приостановить развитие цепной реакции.

Реакторы на быстрых нейтронах работают без замедлителя на обогащенной смеси урана, содержащего не менее $15%$ изотопа $↙{92}↖{235}U$). Их преимуществом является образование в процессе работы значительного количества плутония, который сам может быть использован в дальнейшем в качестве ядерного топлива. Такие реакторы называются реакторами-размножителями, поскольку они воспроизводят делящийся материал. Коэффициент воспроизводства таких реакторов достигает $1.5$. Это означает, что в реакторе при делении $1$ кг изотопа $↙{92}↖{235}U$ получается до $1.5$ кг плутония. В обычных реакторах коэффициент воспроизводства достигает $0.6-0.7$.

Практика: решай 19 задание и тренировочные варианты ЕГЭ по физике